543 research outputs found

    Hybrid P2P Architecture for Transaction Management

    Get PDF

    Spin-orbit-torque magnonics

    Full text link
    The field of magnonics, which utilizes propagating spin waves for nano-scale transmission and processing of information, has been significantly advanced by the advent of the spin-orbit torque. The latter phenomenon can allow one to overcome two main drawbacks of magnonic devices - low energy efficiency of conversion of electrical signals into spin wave signals, and fast spatial decay of spin waves in thin-film waveguiding structures. At first glance, the excitation and amplification of spin waves by spin-orbit torques can seem to be straightforward. Recent research indicates, however, that the lack of the mode-selectivity in the interaction of spin currents with dynamic magnetic modes and the onset of dynamic nonlinear phenomena represent significant obstacles. Here, we discuss the possible route to overcoming these limitations, based on the suppression of nonlinear spin-wave interactions in magnetic systems with perpendicular magnetic anisotropy. We show that this approach enables efficient excitation of coherent magnetization dynamics and propagating spin waves in extended spatial regions, and is expected to enable practical implementation of complete compensation of spin-wave propagation losses

    Electrical Noise From Phase Separation In Pr2/3Ca1/3MnO3 Single Crystal

    Full text link
    Low frequency electrical noise measurements have been used to probe the electronic state of the perovskite-type manganese oxide Pr2/3Ca1/3MnO3 versus temperature and in the vicinity of the field-induced transition from the insulating, charge-ordered state (I-CO) to the metallic, ferromagnetic state (M-F). At high temperature we have observed a high level of the excess noise with mainly a gaussian distribution of the resistance fluctuations, and the associated power spectral density has a standard 1/f dependence. However, in the hysteretic region, where the electrical resistance depends dramatically on the sample history, we have observed a huge non-gaussian noise characterized by two level fluctuator-like switching (TLS) in the time domain. We discuss the origin of the noise in terms of percolative behavior of the conductivity. We speculate that the dominant fluctuators are manganese clusters switching between the M-F and the I-CO phases.Comment: RevTeX, 6 pages with 3 figure

    Noise Probe of the Dynamic Phase Separation in La2/3Ca1/3MnO3

    Full text link
    Giant Random Telegraph Noise (RTN) in the resistance fluctuation of a macroscopic film of perovskite-type manganese oxide La2/3Ca1/3MnO3 has been observed at various temperatures ranging from 4K to 170K, well below the Curie temperature (TC = 210K). The amplitudes of the two-level-fluctuations (TLF) vary from 0.01% to 0.2%. We use a statistical analysis of the life-times of the TLF to gain insight into the microscopic electronic and magnetic state of this manganite. At low temperature (below 30K) The TLF is well described by a thermally activated two-level model. An estimate of the energy difference between the two states is inferred. At higher temperature (between 60K and 170K) we observed critical effects of the temperature on the life-times of the TLF. We discuss this peculiar temperature dependence in terms of a sharp change in the free energy functional of the fluctuators. We attribute the origin of the RTN to be a dynamic mixed-phase percolative conduction process, where manganese clusters switch back and forth between two phases that differ in their conductivity and magnetization.Comment: 15 pages, PDF only, Phys. Rev. Lett. (in press

    Electronic control of the spin-wave damping in a magnetic insulator

    Get PDF
    It is demonstrated that the decay time of spin-wave modes existing in a magnetic insulator can be reduced or enhanced by injecting an in-plane dc current, IdcI_\text{dc}, in an adjacent normal metal with strong spin-orbit interaction. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of IdcI_\text{dc} in a 5~μ\mum diameter YIG(20nm){\textbar}Pt(7nm) disk using a magnetic resonance force microscope (MRFM). Complete compensation of the damping of the fundamental mode is obtained for a current density of 31011A.m2\sim 3 \cdot 10^{11}\text{A.m}^{-2}, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime.Comment: 6 pages 4 figure

    Field-induced segregation of ferromagnetic nano-domains in Pr0.5_{0.5}Sr0.5_{0.5}MnO3_3, detected by 55^{55}Mn NMR

    Full text link
    The antiferromagnetic manganite Pr0.5_{0.5}Sr0.5_{0.5}MnO3_3 was investigated at low temperature by means of magnetometry and 55^{55}Mn NMR. A field-induced transition to a ferromagnetic state is detected by magnetization measurements at a threshold field of a few tesla. NMR shows that the ferromagnetic phase develops from zero field by the nucleation of microscopic ferromagnetic domains, consisting of an inhomogeneous mixture of tilted and fully aligned parts. At the threshold the NMR spectrum changes discontinuously into that of a homogeneous, fully aligned, ferromagnetic state, suggesting a percolative origin for the ferromagnetic transition.Comment: Latex 2.09 language. 4 pages, 3 figures, 23 references. Submitted to physical Review

    Protecting nickel with graphene spin-filtering membranes: A single layer is enough

    Get PDF
    We report on the demonstration of ferromagnetic spin injectors for spintronics which are protected against oxidation through passivation by a single layer of graphene. The graphene monolayer is directly grown by catalytic chemical vapor deposition on pre-patterned nickel electrodes. X-ray photoelectron spectroscopy reveals that even with its monoatomic thickness, monolayer graphene still efficiently protects spin sources against oxidation in ambient air. The resulting single layer passivated electrodes are integrated into spin valves and demonstrated to act as spin polarizers. Strikingly, the atom-thick graphene layer is shown to be sufficient to induce a characteristic spin filtering effect evidenced through the sign reversal of the measured magnetoresistance.We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline and we thank the BESSY staff for continuous support of our experiments. R.S.W. acknowledges a Research Fellowship from St. John’s College, Cambridge. S.H. acknowledges funding from ERC grant InsituNANO (No. 279342) and EPSRC grant GRAPHTED (EP/K016636/1). P.S. acknowledges the Institut Universitaire de France for a junior fellowship. This research was partially supported by the EU FP7 Work Programme under Grant GRAFOL (No. 285275) and Graphene Flagship (No. 604391).This is the final published version. It first appeared at http://scitation.aip.org/content/aip/journal/apl/107/1/10.1063/1.4923401

    Unusual magnetic relaxation behavior in La0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3

    Full text link
    We have carried out a systematic magnetic relaxation study, measured after applying and switching off a 5 T magnetic field to polycrystalline samples of La0.5Ca0.5MnO3 and Nd0.5Sr0.5MnO3. The long time logarithmic relaxation rate (LTLRR), decreased from 10 K to 150 K and increased from 150 K to 195 K in La0.5Ca0.5MnO3. This change in behavior was found to be related to the complete suppression of the antiferromagnetic phase above 150 K and in the presence of a 5 T magnetic field. At 195 K, the magnetization first decreased, and after a few minutes increased slowly as a function of time. Moreover, between 200 K and 245 K, the magnetization increased throughout the measured time span. The change in the slope of the curves, from negative to positive at about 200 K was found to be related to the suppression of antiferromagnetic fluctuations in small magnetic fields. A similar temperature dependence of the LTLRR was found for the Nd0.5Sr0.5MnO3 sample. However, the temperature where the LTLRR reached the minimum in Nd0.5Sr0.5MnO3 was lower than that of La0.5Ca0.5MnO3. This result agrees with the stronger ferromagnetic interactions that exist in Nd0.5Sr0.5MnO3 in comparison to La0.5Ca0.5MnO3. The above measurements suggested that the general temperature dependence of the LTLRR and the underlying physics were mainly independent of the particular charge ordering system considered. All relaxation curves could be fitted using a logarithmic law at long times. This slow relaxation was attributed to the coexistence of ferromagnetic and antiferromagnetic interactions between Mn ions, which produced a distribution of energy barriers.Comment: Accepted to PRB as a regular article, 10 figures, Scheduled Issue: 01 June 200
    corecore