178 research outputs found

    Distribution of the delay time and the dwell time for wave reflection from a long random potential

    Get PDF
    We re-examine and correct an earlier derivation of the distribution of the Wigner phase delay time for wave reflection from a long one-dimensional disordered conductor treated in the continuum limit. We then numerically compare the distributions of the Wigner phase delay time and the dwell time, the latter being obtained by the use of an infinitesimal imaginary potential as a clock, and investigate the effects of strong disorder and a periodic (discrete) lattice background. We find that the two distributions coincide even for strong disorder, but only for energies well away from the band-edges.Comment: Final version with minor corrections in text, 4 pages, 2 PS figure

    Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances

    Full text link
    A tri-layer metamaterial perfect absorber of light, consisting of (Al/ZnS/Al) films with the top aluminium layer patterned as an array of circular disk nanoantennas, is investigated for resonantly enhancing Raman scattering from C-60 fullerene molecules deposited on the metamaterial. The metamaterial is designed to have resonant bands due to plasmonic and electromagnetic resonances at the Raman pump frequency (725 nm) as well as Stokes emission bands. The Raman scattering from C60 on the metamaterial with resonantly matched bands is measured to be enhanced by an order of magnitude more than from C60 on metamaterials with off-resonant absorption bands peaked at 1090 nm. The Raman pump is significantly enhanced due to the resonance with a propagating surface plasmon band, while the highly impedance matched electromagnetic resonance is expected to couple out the Raman emission efficiently. The nature and hybridization of the plasmonic and electromagnetic resonances to form compound resonances are investigated by numerical simulations.Comment: 9 pages, 4 figure

    Propagating and evanescent waves in absorbing media

    Full text link
    We compare the behavior of propagating and evanescent light waves in absorbing media with that of electrons in the presence of inelastic scattering. The imaginary part of the dielectric constant results primarily in an exponential decay of a propagating wave, but a phase shift for an evanescent wave. We then describe how the scattering of quantum particles out of a particular coherent channel can be modeled by introducing an imaginary part to the potential in analogy with the optical case. The imaginary part of the potential causes additional scattering which can dominate and actually prevent absorption of the wave for large enough values of the imaginary part. We also discuss the problem of maximizing the absorption of a wave and point out that the existence of a bound state greatly aids absorption. We illustrate this point by considering the absorption of light at the surface of a metal.Comment: Brief Review, to appear in the American Journal of Physics, http://www.kzoo.edu/ajp

    Diffusion at constant speed in a model phase space

    Full text link
    We reconsider the problem of diffusion of particles at constant speed and present a generalization of the Telegrapher process to higher dimensional stochastic media (d>1d>1), where the particle can move along 2d2^d directions. We derive the equations for the probability density function using the ``formulae of differentiation'' of Shapiro and Loginov. The model is an advancement over similiar models of photon migration in multiply scattering media in that it results in a true diffusion at constant speed in the limit of large dimensions.Comment: Final corrected version RevTeX, 6 pages, 1 figur
    corecore