1,517 research outputs found
Non-axisymmetric oscillations of stratified coronal magnetic loops with elliptical cross-sections
We study non-axisymmetric oscillations of a straight magnetic tube with an
elliptic cross-section and density varying along the tube. The governing
equations for kink and fluting modes in the thin tube approximation are
derived. We found that there are two kink modes, polarised along the large and
small axes of the elliptic cross-section. We have shown that the ratio of
frequencies of the first overtone and fundamental harmonic is the same for both
kink modes and independent of the ratio of the ellipse axes. On the basis of
this result we concluded that the estimates of the atmospheric scale height
obtained using simultaneous observations of the fundamental harmonic and first
overtone of the coronal loop kink oscillations are independent of the
ellipticity of the loop cross-section
Pre-incubation of cell-free HIV-1 group M isolates with non-nucleoside reverse transcriptase inhibitors blocks subsequent viral replication in co-cultures of dendritic cells and T cells.
In order to study the inhibitory effect of various reverse transcriptase inhibitors (RTIs) on cell-free HIV, we adapted a recently described in vitro system, based on co-cultures of dendritic cells and resting CD4 T cells, modelling early target cells during sexual transmission. The compounds tested included the second-generation non-nucleoside RTI (NNRTI) TMC-120 (R147681, dapivirine) and TMC-125 (R165335, travertine), as well as the reference nucleoside RTI AZT (zidovudine), the nucleotide RTI PMPA (tenofovir) and the NNRTI UC-781. The virus strains included the reference strain HIV-1Ba-L and six primary isolates, representative of the HIV-1 group M pandemic. They all display the non-syncytium-inducing and CCR5 receptor-using (NSI/R5) phenotype, important in transmission. Cell-free virus was immobilized on a poly-L-lysine (PLL)-treated microwell plate and incubated with compound for 1 h. Afterwards, the compound was thoroughly washed away; target cells were added and cultured for 2 weeks, followed by an extended culture with highly susceptible mitogen-activated T cells. Viral production in the cultures was measured on supernatant with HIV antigen ELISA. Negative results were confirmed by showing absence of proviral DNA in the cells. TMC-120 and TMC-125 inhibited replication of HIV-1Ba-L with average EC50 values of 38 nM and 117 nM, respectively, whereas the EC50 of UC-781 was 517 nM. Complete suppression of virus and provirus was observed at compound concentrations of 100, 300 and 1000 nM, respectively. Inhibition of all primary isolates followed the same pattern as HIV-1Ba-L. In contrast, pre-treating the virus with the nucleotide RTI PMPA and AZT failed to inhibit infection even at a concentration of 100000 nM. These data clearly suggest that NNRTIs inactivate RT enzymatic activity of different viral clades (predominant in the epidemic) and might be proposed for further testing as a sterilizing microbicide worldwide
Transverse oscillations of two parallel coronal loops
Context. Collective oscillations of two or more coronal magnetic loops are observed very often.
Aims. We study the eigenmodes of oscillations of a system consisting of two parallel magnetic loops.
Methods. The linearised MHD equations for a cold plasma are solved analytically in bicylindrical coordinates using the longwavelength approximation. A dispersion equation determining the frequencies of eigenmodes is derived and solved analytically.
Results. Two solutions of the dispersion relation were found. The higher frequency corresponds to the antisymmetric mode polarised in the direction parallel to the line connecting the loop centres, and the symmetric mode polarised in the perpendicular direction.
Depending on the polarisation of modes corresponding to the lower frequency, the systems of two parallel loops are classified as standard and anomalous. In standard systems the lower frequency corresponds to the symmetric mode polarised in the direction parallel to the line connecting the loop centres, and the antisymmetric mode polarised in the perpendicular direction. In anomalous systems
the lower frequency corresponds to the antisymmetric mode polarised in the direction parallel to the line connecting the loop centres, and the symmetric mode polarised in the perpendicular direction. The limiting case of two identical loops is studied. The results for this case are compared with recent numerical results
Observational evidence favors a resistive wave heating mechanism for coronal loops over a viscous phenomenon
Context. How coronal loops are heated to their observed temperatures is the subject of a long standing debate.
Aims. Observational evidence exists that the heating in coronal loops mainly occurs near the loop footpoints. In this article, analytically and numerically obtained heating profiles produced by resonantly damped waves are compared to the observationally estimated profiles.
Methods. To do that, the predicted heating profiles are fitted with an exponential heating function, which was also used to fit the observations. The results of both fits, the estimated heating scale heights, are compared to determine the viability of resonant absorption as a heating mechanism for coronal loops.
Results. Two results are obtained. It is shown that any wave heating mechanism (i.e. not just resonant absorption) should be dominated by a resistive (and not a viscous) phenomenon in order to accomodate the constraint of footpoint heating. Additionally it is demonstrated that the analytically and numerically estimated heating scale heights for the resonant absorption damping mechanism
fit the observations very well
Alpha managers - an advantage or disadvantage for the organization
The role of the manager is crucial to the organization. Managers set goals, develop strategies and define tasks of workers, create environment for the development of people and give meaning to their activities. Professional skills are of vital importance to manager’s success. These very skills are the distinguishing characteristics of alpha managers. The aim of the following paper is to present some of the most established ideas in the field of leadership styles, to compare them with the concept of alpha managers and draw some conclusions important to management
Resonantly damped oscillations of longitudinally stratified coronal loops
Soon after coronal loop oscillations were observed by TRACE spacecraft for the first time in 1999, various theoretical models have been put forward to explain the rapid damping of the oscillations of these intriguing objects. Coronal loop oscillations are often interpreted as fast kink modes of a straight cylindrical magnetic flux tube with immovable edges modelling dense photospheric plasma at the ends of the loop. Taking this model as a basis we use cold plasma approximation and consider the tube to be thin to simplify the problem and be able to deal with it analytically. In its equilibrium state the tube is permeated by a homogeneous magnetic field directed along the tube axis. We include the effect of stratification in our model supposing that plasma density varies along the tube. There is also density inhomogeneity in the radial direction confined in a layer with thickness much smaller than the radius of the tube. Considering the system of linearized MHD equations we study the dependence of the spectrum of tube oscillations and its damping due to resonant absorption on the parameters of the unperturbed state. The implication of the obtained results on coronal seismology is discussed
Torsional Alfvén waves: magneto-seismology in static and dynamic coronal plasmas
Aims: We study the properties of torsional Alfvén waves in coronal loops so that they may be exploited for coronal seismological applications.
Methods: The governing equation is obtained for standing torsional Alfvén waves of a dynamic, gravitationally stratified plasma. The footpoints are assumed to obey line-tying conditions necessary for standing oscillations. Solutions are found in a number of different but typical scenarios to demonstrate the possibilities for both temporal and spatial magneto-seismology exploitation of waveguides with the standing torsional Alfvén oscillations.
Results: It is found that the frequency of the standing Alfvén oscillation increases as the stratification of the plasma increases. The ratio of the periods of the fundamental modeand the first overtone is also found to change as the stratification of the plasma increases. Further, the eigenfunctions of the higher overtones of the standing oscillations are found to experience a shift of their anti-nodes. The influence of a dynamic plasma on the amplitudes of the mode is also investigated. The amplitude of the torsional Alfvén mode is found to increase as the plasma within the coronal loop experiences cooling
Kink oscillations of cooling coronal loops with variable cross-section
We study kink waves and oscillations in a thin expanding magnetic tube in the presence of flow. The tube consists of a core region and a thin transitional region at the tube boundary. In this region the plasma density monotonically decreases from its value in the core region to the value outside the tube. Both the plasma density and velocity of background flow vary along the tube and in time. Using the multiscale expansions we derive the system of two equations describing the kink oscillations. When there is no transitional layer the oscillations are described by the first of these two equations. We use this equation to study the effect of plasma density variation with time on kink oscillations of an expanding tube with a sharp boundary. We assume that the characteristic time of the density variation is much greater than the characteristic time of kink oscillations. Then we use the Wentzel-Kramer-Brillouin (WKB) method to derive the expression for the adiabatic invariant, which is the quantity that is conserved when the plasma density varies. The general theoretical results are applied to the kink oscillations of coronal magnetic loops. We consider an expanding loop with the half-circle shape and assume that the plasma temperature inside a loop decays exponentially with time. We numerically calculated the dependences of the fundamental mode frequency, the ratio of frequencies of the first overtone and fundamental mode, and the oscillation amplitude on time. We obtained that the oscillation frequency and amplitude increase and the frequency ratio decreases due to cooling. The amplitude increase is stronger for loops with a greater expansion factor. This effect is also more pronounced for higher loops. However, it is fairly moderate even for loops that are quite high
Борис Гесселевич (Григорьевич) Галкович как историк-картограф
Освещаются этапы жизни и творчества Б.Г. Галковича — автора
или редактора около 700 исторических карт, в т. ч. в ряде атласов, в
13 томах «Всемирной истории», в 7 томах «Истории СССР с древнейших времён до наших дней» и др. Основы методологии исторической
картографии изложены Б.Г. Галковичем на международных конференциях и в ряде статей. В приложении — список текстовых и картографических работ Б.Г. Галковича, опубликованных в 1950–1983 гг.The publication sheds light on the life and work of B.H. Halkovych, the
author and editor of nearly 700 historical maps in atlases, 13 volumes of "The
World History", 7 volumes of "The History of the USSR since Earliest Times
up Today" etc. The methodological principles of historical cartography have
been set out by B.H. Halkovych at international conferences and in numerous
articles. The supplements contain a list of B.H. Halkovych’s text and
cartographical works (published in 1950–1983)
Resonant Absorption as Mode Conversion?
Resonant absorption and mode conversion are both extensively studied
mechanisms for wave "absorption" in solar magnetohydrodynamics (MHD). But are
they really distinct? We re-examine a well-known simple resonant absorption
model in a cold MHD plasma that places the resonance inside an evanescent
region. The normal mode solutions display the standard singular resonant
features. However, these same normal modes may be used to construct a ray
bundle which very clearly undergoes mode conversion to an Alfv\'en wave with no
singularities. We therefore conclude that resonant absorption and mode
conversion are in fact the same thing, at least for this model problem. The
prime distinguishing characteristic that determines which of the two
descriptions is most natural in a given circumstance is whether the converted
wave can provide a net escape of energy from the conversion/absorption region
of physical space. If it cannot, it is forced to run away in wavenumber space
instead, thereby generating the arbitrarily small scales in situ that we
recognize as fundamental to resonant absorption and phase mixing. On the other
hand, if the converted wave takes net energy way, singularities do not develop,
though phase mixing may still develop with distance as the wave recedes.Comment: 23 pages, 8 figures, 2 tables; accepted by Solar Phys (July 9 2010
- …
