551 research outputs found

    Formal matched asymptotics for degenerate Ricci flow neckpinches

    Full text link
    Gu and Zhu have shown that Type-II Ricci flow singularities develop from nongeneric rotationally symmetric Riemannian metrics on SmS^m, for all m3m\geq 3. In this paper, we describe and provide plausibility arguments for a detailed asymptotic profile and rate of curvature blow-up that we predict such solutions exhibit

    Complete Embedded Self-Translating Surfaces under Mean Curvature Flow

    Full text link
    We describe a construction of complete embedded self-translating surfaces under mean curvature flow by desingularizing the intersection of a finite family of grim reapers in general position.Comment: 42 pages, 8 figures. v2: typos correcte

    In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana

    Get PDF
    Background: MADS domain transcription factors play important roles in various developmental processes in flowering plants. Members of this family play a prominent role in the transition to flowering and the specification of floral organ identity. Several studies reported mRNA expression patterns of the genes encoding these MADS domain proteins, however, these studies do not provide the necessary information on the temporal and spatial localisation of the proteins. We have made GREEN FLUORESCENT PROTEIN (GFP) translational fusions with the four MADS domain proteins SEPALLATA3, AGAMOUS, FRUITFULL and APETALA1 from the model plant Arabidopsis thaliana and analysed the protein localisation patterns in living plant tissues by confocal laser scanning microscopy (CLSM). Results: We unravelled the protein localisation patterns of the four MADS domain proteins at a cellular and subcellular level in inflorescence and floral meristems, during development of the early flower bud stages, and during further differentiation of the floral organs. The protein localisation patterns revealed a few deviations from known mRNA expression patterns, suggesting a non-cell autonomous action of these factors or alternative control mechanisms. In addition, we observed a change in the subcellular localisation of SEPALLATA3 from a predominantly nuclear localisation to a more cytoplasmic localisation, occurring specifically during petal and stamen development. Furthermore, we show that the down-regulation of the homeodomain transcription factor WUSCHEL in ovular tissues is preceded by the occurrence of both AGAMOUS and SEPALLATA3 proteins, supporting the hypothesis that both proteins together suppress WUSCHEL expression in the ovule. Conclusion: This approach provides a highly detailed in situ map of MADS domain protein presence during early and later stages of floral development. The subcellular localisation of the transcription factors in the cytoplasm, as observed at certain stages during development, points to mechanisms other than transcriptional control. Together this information is essential to understand the role of these proteins in the regulatory processes that drive floral development and leads to new hypotheses

    Application of the level-set method to the implicit solvation of nonpolar molecules

    Full text link
    A level-set method is developed for numerically capturing the equilibrium solute-solvent interface that is defined by the recently proposed variational implicit solvent model (Dzubiella, Swanson, and McCammon, Phys. Rev. Lett. {\bf 104}, 527 (2006) and J. Chem.\Phys. {\bf 124}, 084905 (2006)). In the level-set method, a possible solute-solvent interface is represented by the zero level-set (i.e., the zero level surface) of a level-set function and is eventually evolved into the equilibrium solute-solvent interface. The evolution law is determined by minimization of a solvation free energy {\it functional} that couples both the interfacial energy and the van der Waals type solute-solvent interaction energy. The surface evolution is thus an energy minimizing process, and the equilibrium solute-solvent interface is an output of this process. The method is implemented and applied to the solvation of nonpolar molecules such as two xenon atoms, two parallel paraffin plates, helical alkane chains, and a single fullerene C60C_{60}. The level-set solutions show good agreement for the solvation energies when compared to available molecular dynamics simulations. In particular, the method captures solvent dewetting (nanobubble formation) and quantitatively describes the interaction in the strongly hydrophobic plate system

    A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations

    Get PDF
    The purpose of this paper is to enhance a correspondence between the dynamics of the differential equations y˙(t)=g(y(t))\dot y(t)=g(y(t)) on Rd\mathbb{R}^d and those of the parabolic equations u˙=Δu+f(x,u,u)\dot u=\Delta u +f(x,u,\nabla u) on a bounded domain Ω\Omega. We give details on the similarities of these dynamics in the cases d=1d=1, d=2d=2 and d3d\geq 3 and in the corresponding cases Ω=(0,1)\Omega=(0,1), Ω=T1\Omega=\mathbb{T}^1 and dim(Ω\Omega)2\geq 2 respectively. In addition to the beauty of such a correspondence, this could serve as a guideline for future research on the dynamics of parabolic equations

    On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow

    Get PDF
    In this article, we study the axisymmetric surface diffusion flow (ASD), a fourth-order geometric evolution law. In particular, we prove that ASD generates a real analytic semiflow in the space of (2 + \alpha)-little-H\"older regular surfaces of revolution embedded in R^3 and satisfying periodic boundary conditions. We also give conditions for global existence of solutions and prove that solutions are real analytic in time and space. Further, we investigate the geometric properties of solutions to ASD. Utilizing a connection to axisymmetric surfaces with constant mean curvature, we characterize the equilibria of ASD. Then, focusing on the family of cylinders, we establish results regarding stability, instability and bifurcation behavior, with the radius acting as a bifurcation parameter for the problem.Comment: 37 pages, 6 figures, To Appear in SIAM J. Math. Ana

    Optimal Transport, Convection, Magnetic Relaxation and Generalized Boussinesq equations

    Full text link
    We establish a connection between Optimal Transport Theory and classical Convection Theory for geophysical flows. Our starting point is the model designed few years ago by Angenent, Haker and Tannenbaum to solve some Optimal Transport problems. This model can be seen as a generalization of the Darcy-Boussinesq equations, which is a degenerate version of the Navier-Stokes-Boussinesq (NSB) equations. In a unified framework, we relate different variants of the NSB equations (in particular what we call the generalized Hydrostatic-Boussinesq equations) to various models involving Optimal Transport (and the related Monge-Ampere equation. This includes the 2D semi-geostrophic equations and some fully non-linear versions of the so-called high-field limit of the Vlasov-Poisson system and of the Keller-Segel for Chemotaxis. Finally, we show how a ``stringy'' generalization of the AHT model can be related to the magnetic relaxation model studied by Arnold and Moffatt to obtain stationary solutions of the Euler equations with prescribed topology

    Dirichlet sigma models and mean curvature flow

    Full text link
    The mean curvature flow describes the parabolic deformation of embedded branes in Riemannian geometry driven by their extrinsic mean curvature vector, which is typically associated to surface tension forces. It is the gradient flow of the area functional, and, as such, it is naturally identified with the boundary renormalization group equation of Dirichlet sigma models away from conformality, to lowest order in perturbation theory. D-branes appear as fixed points of this flow having conformally invariant boundary conditions. Simple running solutions include the paper-clip and the hair-pin (or grim-reaper) models on the plane, as well as scaling solutions associated to rational (p, q) closed curves and the decay of two intersecting lines. Stability analysis is performed in several cases while searching for transitions among different brane configurations. The combination of Ricci with the mean curvature flow is examined in detail together with several explicit examples of deforming curves on curved backgrounds. Some general aspects of the mean curvature flow in higher dimensional ambient spaces are also discussed and obtain consistent truncations to lower dimensional systems. Selected physical applications are mentioned in the text, including tachyon condensation in open string theory and the resistive diffusion of force-free fields in magneto-hydrodynamics.Comment: 77 pages, 21 figure

    On a degenerate non-local parabolic problem describing infinite dimensional replicator dynamics

    Get PDF
    We establish the existence of locally positive weak solutions to the homogeneous Dirichlet problem for ut=uΔu+uΩu2 u_t = u \Delta u + u \int_\Omega |\nabla u|^2 in bounded domains \Om\sub\R^n which arises in game theory. We prove that solutions converge to 00 if the initial mass is small, whereas they undergo blow-up in finite time if the initial mass is large. In particular, it is shown that in this case the blow-up set coincides with Ω\overline{\Omega}, i.e. the finite-time blow-up is global

    Shrinkers, expanders, and the unique continuation beyond generic blowup in the heat flow for harmonic maps between spheres

    Full text link
    Using mixed analytical and numerical methods we investigate the development of singularities in the heat flow for corotational harmonic maps from the dd-dimensional sphere to itself for 3d63\leq d\leq 6. By gluing together shrinking and expanding asymptotically self-similar solutions we construct global weak solutions which are smooth everywhere except for a sequence of times T1<T2<...<Tk<T_1<T_2<...<T_k<\infty at which there occurs the type I blow-up at one of the poles of the sphere. We show that in the generic case the continuation beyond blow-up is unique, the topological degree of the map changes by one at each blow-up time TiT_i, and eventually the solution comes to rest at the zero energy constant map.Comment: 24 pages, 8 figures, minor corrections, matches published versio
    corecore