100,760 research outputs found

    Solvent coarsening around colloids driven by temperature gradients

    Full text link
    Using mesoscopic numerical simulations and analytical theory we investigate the coarsening of the solvent structure around a colloidal particle emerging after a temperature quench of the colloid surface. Qualitative differences in the coarsening mechanisms are found, depending on the composition of the binary liquid mixture forming the solvent and on the adsorption preferences of the colloid. For an adsorptionwise neutral colloid, as function of time the phase being next to its surface alternates. This behavior sets in on the scale of the relaxation time of the solvent and is absent for colloids with strong adsorption preferences. A Janus colloid, with a small temperature difference between its two hemispheres, reveals an asymmetric structure formation and surface enrichment around it, even if the solvent is within its one-phase region and if the temperature of the colloid is above the critical demixing temperature TcT_c of the solvent. Our phenomenological model turns out to capture recent experimental findings according to which, upon laser illumination of a Janus colloid and due to the ensuing temperature gradient between its two hemispheres, the surrounding binary liquid mixture develops a concentration gradient.Comment: 8 pages, 4 figure

    Coherence recovery mechanisms in quantum Hall edge states

    Full text link
    The work is motivated by the puzzling results of the recent experiment [S. Tewari et al., Phys. Rev. B 93, 035420 (2016)], where a robust coherence recovery from a certain energy was detected for an electron injected into the quantum Hall edge at the filling factor 2. After passing through a quantum dot the electron then tunnels into the edge with a subsequent propagation towards a symmetric Mach-Zender interferometer, after which the visibility of Aharonov-Bohm (AB) oscillations is measured. According to conventional understanding its decay with the increasing energy of the injected electron was expected, which was confirmed theoretically in the bosonization framework. Here we analyze why such a model fails to account for the coherence recovery and show that the reason is essentially the destructive interference of the two quasiparticles (charge and neutral modes) forming at the edge out of the incoming electron. This statement is robust with respect to the strength of Coulomb interaction. We firstly exploit the idea of introducing an imbalance between the quasiparticles, by creating different conditions of propagation for them. It can be done by taking into account either dispersion or dissipation, which indeed results in the partial coherence recovery. The idea of imbalance can also be realized by applying a periodic potential to the arms of interferometer. We discuss such an experiment, which might also shed light on the internal coherence of the two edge excitations. Another scenario relies on the lowering of the energy density of the electron wave packet by the time it arrives at the interferometer in presence of dissipation or dispersion. This energy density is defined by a certain parameter, which is completely independent of the injected energy, which naturally explains the emergence of a threshold energy in the experiment.Comment: 15 pages, 4 figure

    The ‘Lost’ Church of Bix Gibwyn: The Human Bone

    Get PDF
    Recent research for the Victoria County History (VCH) highlighted the presence of a ‘lost’ medieval church in Bix, a Chilterns parish north-west of Henley-on-Thames. The building, formerly the parish church of Bix Gibwyn, was abandoned in the late sixteenth or seventeenth century and has left no standing remains. Archaeological investigation by the South Oxfordshire Archaeological Group (SOAG) and Reading University has confirmed its location in a close called ‘Old Chapel’ in Bix Bottom, in the north of the parish. The rediscovery of the site – which contains the foundations of a hitherto unknown Romano-British stone building – sheds new light on long-term changes in local communications, settlement, and economic conditions. In the Middle Ages Bix Gibwyn church was a focus of religious and social life for a small rural community in the south Oxfordshire Chilterns. After the Reformation it was neglected, demolished, and finally all but forgotten. Its location has been a matter of speculation for over a hundred years,1 but in 2007–10 its churchyard was identified through a combination of historical research and archaeological fieldwork. Confirmation of the church’s location in the remote Bix Bottom valley provides important evidence about the medieval settlement pattern in Bix, which was very different from the modern one, and offers an opportunity to reassess the development of settlement in the southern Chilterns more generally. The archaeological findings also supply new evidence about Roman activity in the area

    State-dependence of climate sensitivity: attractor constraints and palaeoclimate regimes

    Full text link
    Equilibrium climate sensitivity (ECS) is a key predictor of climate change. However, it is not very well constrained, either by climate models or by observational data. The reasons for this include strong internal variability and forcing on many time scales. In practise this means that the 'equilibrium' will only be relative to fixing the slow feedback processes before comparing palaeoclimate sensitivity estimates with estimates from model simulations. In addition, information from the late Pleistocene ice age cycles indicates that the climate cycles between cold and warm regimes, and the climate sensitivity varies considerably between regime because of fast feedback processes changing relative strength and time scales over one cycle. In this paper we consider climate sensitivity for quite general climate dynamics. Using a conceptual Earth system model of Gildor and Tziperman (2001) (with Milankovich forcing and dynamical ocean biogeochemistry) we explore various ways of quantifying the state-dependence of climate sensitivity from unperturbed and perturbed model time series. Even without considering any perturbations, we suggest that climate sensitivity can be usefully thought of as a distribution that quantifies variability within the 'climate attractor' and where there is a strong dependence on climate state and more specificially on the 'climate regime' where fast processes are approximately in equilibrium. We also consider perturbations by instantaneous doubling of CO2_2 and similarly find a strong dependence on the climate state using our approach.Comment: 32 pages, 10 figure

    Magnetic fields on a wide range of scales in star-forming galaxies

    Full text link
    A key ingredient in the evolution of galaxies is the star formation cycle. Recent progress in the study of magnetic fields is revealing the close connection between star formation and its effect on the small-scale structure in the magnetized interstellar medium (ISM). In this contribution we describe how the modern generation of radio telescopes is being used to probe the physics of the ISM through sensitive multiwavelength surveys of gas and magnetic fields, from the inner star forming disk and outward into the galaxy outskirts where large-scale magnetic fields may also play a key role. We highlight unique pioneering efforts towards performing and scientifically exploiting large-scale surveys of the type that the SKA will undertake routinely. Looking to the future, we describe plans for using the Square Kilometre Array (SKA) and its pathfinders to gain important new insights into the cosmic history of galaxy evolution.Comment: 12 pages, 3 figures, Proceedings of the conference "The many facets of extragalactic radio surveys: towards new scientific challenges", PoS(EXTRA-RADSUR2015)011, eds. I Prandoni & R. Morgant

    The Galactic Isotropic γ\gamma-ray Background and Implications for Dark Matter

    Full text link
    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ\gamma-ray flux--the statistically uniform flux in circular annuli about the Galactic center. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistic method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0\pi^0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modeling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ\gamma-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.Comment: 20 pages, 15 figures, references adde
    corecore