1,117 research outputs found

    Direct CP, T and/or CPT violations in the K^0-\bar{K^0} system - Implications of the recent KTeV results on 2π2\pi decays -

    Full text link
    The recent results on the CP violating parameters Re(e'/e) and \Delta\phi = \phi_{00}-\phi_{+-} reported by the KTeV Collaboration are analyzed with a view to constrain CP, T and CPT violations in a decay process. Combining with some relevant data compiled by the Particle Data Group, we find Re(e_2-e_0) = (0.85 +- 3.11)*10^{-4} and Im(e_2-e_0) = (3.2 +- 0.7)*10^{-4}, where Re(e_I) and Im(e_I) represent respectively CP/CPT and CP/T violations in decay of K^0 and \bar{K^0} into a 2\pi state with isospin I.Comment: 7 pages, No figure

    Universality Class of O(N)O(N) Models

    Get PDF
    We point out that existing numerical data on the correlation length and magnetic susceptibility suggest that the two dimensional O(3)O(3) model with standard action has critical exponent η=1/4\eta=1/4, which is inconsistent with asymptotic freedom. This value of η\eta is also different from the one of the Wess-Zumino-Novikov-Witten model that is supposed to correspond to the O(3)O(3) model at θ=π\theta=\pi.Comment: 8 pages, with 3 figures included, postscript. An error concerning the errors has been correcte

    GEANT4 low energy electromagnetic models for electrons and photons

    Get PDF
    A set of physics processes has been developed in the Geant4 Simulation Toolkit to describe the electromagnetic interactions of photons and electrons with matter down to 250 eV. Preliminary comparisons of the models with experimental data show a satisfactory agreement

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    Percolation properties of the 2D Heisenberg model

    Get PDF
    We analyze the percolation properties of certain clusters defined on configurations of the 2--dimensional Heisenberg model. We find that, given any direction \vec{n} in O(3) space, the spins almost perpendicular to \vec{n} form a percolating cluster. This result gives indications of how the model can avoid a previously conjectured Kosterlitz-Thouless phase transition at finite temperature T.Comment: 4 pages, 3 eps figures. Revised version (more clear abstract, some new references

    A strong-coupling analysis of two-dimensional O(N) sigma models with N3N\geq 3 on square, triangular and honeycomb lattices

    Full text link
    Recently-generated long strong-coupling series for the two-point Green's functions of asymptotically free O(N){\rm O}(N) lattice σ\sigma models are analyzed, focusing on the evaluation of dimensionless renormalization-group invariant ratios of physical quantities and applying resummation techniques to series in the inverse temperature β\beta and in the energy EE. Square, triangular, and honeycomb lattices are considered, as a test of universality and in order to estimate systematic errors. Large-NN solutions are carefully studied in order to establish benchmarks for series coefficients and resummations. Scaling and universality are verified. All invariant ratios related to the large-distance properties of the two-point functions vary monotonically with NN, departing from their large-NN values only by a few per mille even down to N=3N=3.Comment: 53 pages (incl. 5 figures), tar/gzip/uuencode, REVTEX + psfi

    Transition Radiation Spectra of Electrons from 1 to 10 GeV/c in Regular and Irregular Radiators

    Full text link
    We present measurements of the spectral distribution of transition radiation generated by electrons of momentum 1 to 10 GeV/c in different radiator types. We investigate periodic foil radiators and irregular foam and fiber materials. The transition radiation photons are detected by prototypes of the drift chambers to be used in the Transition Radiation Detector (TRD) of the ALICE experiment at CERN, which are filled with a Xe, CO2 (15 %) mixture. The measurements are compared to simulations in order to enhance the quantitative understanding of transition radiation production, in particular the momentum dependence of the transition radiation yield.Comment: 18 pages, 15 figures, submitted to Nucl. Instr. Meth. Phys. Res.

    A model for decoherence of entangled beauty

    Get PDF
    In the context of the entangled B0Bˉ0B^0 \bar B^0 state produced at the Υ(4S)\Upsilon(4S) resonance, we consider a modification of the usual quantum-mechanical time evolution with a dissipative term, which contains only one parameter denoted by λ\lambda and respects complete positivity. In this way a decoherence effect is introduced in the time evolution of the 2-particle B0Bˉ0B^0 \bar B^0 state, which becomes stronger with increasing distance between the two particles. While our model of time evolution has decoherence for the 2-particle system, we assume that, after the decay of one of the two B mesons, the resulting 1-particle state obeys the purely quantum-mechanical time evolution. From the data on dilepton events we derive an upper bound on λ\lambda. We also show how λ\lambda is related to the so-called ``decoherence parameter'' ζ\zeta, which parameterizes decoherence in neutral flavoured meson--antimeson systems.Comment: 11 pages, revtex. Two references and some comments added, version to be published in Phys. Rev.

    Finite-size scaling of the helicity modulus of the two-dimensional O(3) model

    Full text link
    Using Monte Carlo methods, we compute the finite-size scaling function of the helicity modulus Υ\Upsilon of the two-dimensional O(3) model and compare it to the low temperature expansion prediction. From this, we estimate the range of validity for the leading terms of the low temperature expansion of the finite-size scaling function and for the low temperature expansion of the correlation length. Our results strongly suggest that a Kosterlitz-Thouless transition at a temperature T>0T > 0 is extremely unlikely in this model.Comment: 4 pages, 3 Postscript figures, to appear in Phys. Rev. B Jan. 1997 as a Brief Repor
    corecore