452 research outputs found
Annihilation radiation in cosmic gamma-ray bursts
The pair annihilation radiation in gamma-ray bursts is seen as broad lines with extended hard wings. This radiation is suggested to escape in a collimated beam from magnetic polar regions of neutron stars
GRB Energetics in the Swift Era
We examine the rest frame energetics of 76 gamma-ray bursts (GRBs) with known
redshift that were detected by the Swift spacecraft and monitored by the
satellite's X-ray Telescope (XRT). Using the bolometric fluence values
estimated in Butler et al. 2007b and the last XRT observation for each event,
we set a lower limit the their collimation corrected energy Eg and find that a
68% of our sample are at high enough redshift and/or low enough fluence to
accommodate a jet break occurring beyond the last XRT observation and still be
consistent with the pre-Swift Eg distribution for long GRBs. We find that
relatively few of the X-ray light curves for the remaining events show evidence
for late-time decay slopes that are consistent with that expected from post jet
break emission. The breaks in the X-ray light curves that do exist tend to be
shallower and occur earlier than the breaks previously observed in optical
light curves, yielding a Eg distribution that is far lower than the pre-Swift
distribution. If these early X-ray breaks are not due to jet effects, then a
small but significant fraction of our sample have lower limits to their
collimation corrected energy that place them well above the pre-Swift Eg
distribution. Either scenario would necessitate a much wider post-Swift Eg
distribution for long cosmological GRBs compared to the narrow standard energy
deduced from pre-Swift observations. We note that almost all of the pre-Swift
Eg estimates come from jet breaks detected in the optical whereas our sample is
limited entirely to X-ray wavelengths, furthering the suggestion that the
assumed achromaticity of jet breaks may not extend to high energies.Comment: 30 pages, 10 figures, Accepted to Ap
Tricritical Phenomena at the Cerium Transition
The isostructural transition in the
CeLaTh system is measured as a function of La alloying
using specific heat, magnetic susceptibility, resistivity, thermal
expansivity/striction measurements. A line of discontinuous transitions, as
indicated by the change in volume, decreases exponentially from 118 K to close
to zero with increasing La doping and the transition changes from being
first-order to continuous at a critical concentration . At the tricritical point, the coefficient of the linear term in the
specific heat and the magnetic susceptibility start to increase
rapidly near = 0.14 and gradually approaches large values at =0.35
signifying that a heavy Fermi-liquid state evolves at large doping. Near ,
the Wilson ratio, , has a value of 3.0, signifying the presence of
magnetic fluctuations. Also, the low-temperature resistivity shows that the
character of the low-temperature Fermi-liquid is changing
The second Konus-Wind catalog of short gamma-ray bursts
In this catalog, we present the results of a systematic study of 295 short
gamma-ray bursts (GRBs) detected by Konus-Wind (KW) from 1994 to 2010. From the
temporal and spectral analyses of the sample, we provide the burst durations,
the spectral lags, the results of spectral fits with three model functions, the
total energy fluences and the peak energy fluxes of the bursts. We discuss
evidence found for an additional power-law spectral component and the presence
of extended emission in a fraction of the KW short GRBs. Finally, we consider
the results obtained in the context of the Type I (merger-origin) / Type II
(collapsar-origin) classifications.Comment: Accepted to the Astrophysical Journal Supplement Series (7 Figures, 8
Tables
X-Ray Light Curves of Gamma-ray Bursts Detected with the All-Sky Monitor on RXTE
We present X-ray light curves (1.5-12 keV) for fifteen gamma-ray bursts
(GRBs) detected by the All-Sky Monitor on the Rossi X-ray Timing Explorer. We
compare these soft X-ray light curves with count rate histories obtained by the
high-energy (>12 keV) experiments BATSE, Konus-Wind, the BeppoSAX Gamma-Ray
Burst Monitor, and the burst monitor on Ulysses. We discuss these light curves
within the context of a simple relativistic fireball and synchrotron shock
paradigm, and we address the possibility of having observed the transition
between a GRB and its afterglow. The light curves show diverse morphologies,
with striking differences between energy bands. In several bursts, intervals of
significant emission are evident in the ASM energy range with little or no
corresponding emission apparent in the high-energy light curves. For example,
the final peak of GRB 970815 as recorded by the ASM is only detected in the
softest BATSE energy bands. We also study the duration of bursts as a function
of energy. Simple, singly-peaked bursts seem consistent with the E^{-0.5} power
law expected from an origin in synchrotron radiation, but durations of bursts
that exhibit complex temporal structure are not consistent with this
prediction. Bursts such as GRB 970828 that show many short spikes of emission
at high energies last significantly longer at low energies than the synchrotron
cooling law would predict.Comment: 15 pages with 20 figures and 2 tables. In emulateapj format. Accepted
by ApJ
Liquid-liquid phase transition in Stillinger-Weber silicon
It was recently demonstrated that the Stillinger-Weber silicon undergoes a
liquid-liquid first-order phase transition deep into the supercooled region
(Sastry and Angell, Nature Materials 2, 739 (2003)). Here we study the effects
of perturbations on this phase transition. We show that the order of the
liquid-liquid transition changes with negative pressure. We also find that the
liquid-liquid transition disappears when the three-body term of the potential
is strengthened by as little as 5 %. This implies that the details of the
potential could affect strongly the nature and even the existence of the
liquid-liquid phase.Comment: 13 page
- …
