278 research outputs found
Investigating the Behavior of Compact Composite Descriptors in Early Fusion, Late Fusion and Distributed Image Retrieval
In Content-Based Image Retrieval (CBIR) systems, the visual content of the images is mapped into a new space named the feature space. The features that are chosen must be discriminative and sufficient for the description of the objects. The key to attaining a successful retrieval system is to choose the right features that represent the images as unique as possible. A feature is a set of characteristics of the image, such as color, texture, and shape. In addition, a feature can be enriched with information about the spatial distribution of the characteristic that it describes. Evaluation of the performance of low-level features is usually done on homogenous benchmarking databases with a limited number of images. In real-world image retrieval systems, databases have a much larger scale and may be heterogeneous. This paper investigates the behavior of Compact Composite Descriptors (CCDs) on heterogeneous databases of a larger scale. Early and late fusion techniques are tested and their performance in distributed image retrieval is calculated. This study demonstrates that, even if it is not possible to overcome the semantic gap in image retrieval by feature similarity, it is still possible to increase the retrieval effectiveness
BlogForever D5.2: Implementation of Case Studies
This document presents the internal and external testing results for the BlogForever case studies. The evaluation of the BlogForever implementation process is tabulated under the most relevant themes and aspects obtained within the testing processes. The case studies provide relevant feedback for the sustainability of the platform in terms of potential users’ needs and relevant information on the possible long term impact
Chapter 6. Main Results - Conclusions from GEM-CON-BIO: Governance and Ecosystem Management for Conservation of Biodiversity.
Are Emotions Important? A Study on Social Distances for Path Planning based on Emotions
This study explores the complex dynamics between humans and robots, focusing on how emotional states influence proxemics. We conducted a user study using a standard mobile robot to investigate whether emotions elicited from a loudspeaker, affect human perception of robot proximity. Based on previous research on Human-Human Interaction (HHI), we analysed participants' responses to robots displaying different behaviours. Participants observed the robot's approach while experiencing positive or negative emotions. Our findings suggest that emotional states induced by external stimuli can affect participants' perception of robot proximity. In detail, the results indicate that while comfortable stopping distances were unaffected by participants' emotional state, individuals who experienced positive emotions judged the same proxemics distance used while performing an avoidance behaviour to be more acceptable compared to the case of negative emotions. This study describes the extent to which our emotions can alter the perception of robot behaviours, ultimately affecting our acceptance of these novel social agents
The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot
BACKGROUND: Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. METHODS: Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. RESULTS: Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. CONCLUSIONS: The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted
Editorial: Muscle and Tendon Plasticity and Interaction in Physiological and Pathological Conditions
A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running
Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs
Mechanisms of Adaptation from a Multiple to a Single Step Recovery Strategy following Repeated Exposure to Forward Loss of Balance in Older Adults
When released from an initial, static, forward lean angle and instructed to recover with a single step, some older adults are able to meet the task requirements, whereas others either stumble or fall. The purpose of the present study was to use the concept of margin of stability (MoS) to investigate balance recovery responses in the anterior-posterior direction exhibited by older single steppers, multiple steppers and those that are able to adapt from multiple to single steps following exposure to repeated forward loss of balance. One hundred and fifty-one healthy, community dwelling, older adults, aged 65–80 years, participated in the study. Participants performed four trials of the balance recovery task from each of three initial lean angles. Balance recovery responses in the anterior-posterior direction were quantified at three events; cable release (CR), toe-off (TO) and foot contact (FC), for trials performed at the intermediate lean angle. MoS was computed as the anterior-posterior distance between the forward boundary of the Base of Support (BoS) and the vertical projection of the velocity adjusted centre of mass position (XCoM). Approximately one-third of participants adapted from a multiple to a single step recovery strategy following repeated exposure to the task. MoS at FC for the single and multiple step trials in the adaptation group were intermediate between the exclusively single step group and the exclusively multiple step group, with the single step trials having a significant, 3.7 times higher MoS at FC than the multiple step trials. Consistent with differences between single and multiple steppers, adaptation from multiple to single steps was attributed to an increased BoS at FC, a reduced XCoM at FC and an increased rate of BoS displacement from TO to FC. Adaptations occurred within a single test session and suggest older adults that are close to the threshold of successful recovery can rapidly improve dynamic stability following repeated exposure to a forward loss of balance
- …
