34 research outputs found

    Stabilization of Extra Dimensions and The Dimensionality of the Observed Space

    Full text link
    We present a simple model for the late time stabilization of extra dimensions. The basic idea is that brane solutions wrapped around extra dimensions, which is allowed by string theory, will resist expansion due to their winding mode. The momentum modes in principle work in the opposite way. It is this interplay that leads to dynamical stabilization. We use the idea of democratic wrapping \cite{art5}-\cite{art6}, where in a given decimation of extra dimensions, all possible winding cases are considered. To simplify the study further we assumed a symmetric decimation in which the total number of extra dimensions is taken to be NpNp where N can be called the order of the decimation. We also assumed that extra dimensions all have the topology of tori. We show that with these rather conservative assumptions, there exists solutions to the field equations in which the extra dimensions are stabilized and that the conditions do not depend on pp. This fact means that there exists at least one solution to the asymmetric decimation case. If we denote the number of observed space dimensions (excluding time) by mm, the condition for stabilization is m3m\geq 3 for pure Einstein gravity and m3m\leq 3 for dilaton gravity massaged by string theory parameters.Comment: Final versio

    Multi giant graviton systems, SUSY breaking and CFT

    Full text link
    In this article, we describe giant gravitons in AdS_5 x S^5 moving along generic trajectories in AdS_5. The giant graviton dynamics is solved by proving that the D3-brane effective action reduces to that of a massive point particle in AdS_5 and therefore the solutions are in one to one correspondence with timelike geodesics of AdS_5. All these configurations are related via isometries of the background, which induce target space symmetries in the world volume theory of the D-brane. Hence, all these configurations preserve the same amount of supersymmetry as the original giant graviton, i.e. half of the maximal supersymmetry. Multiparticle configurations of two or more giant gravitons are also considered. In particular, a binary system preserving one quarter of the supersymmetries is found, providing a non trivial time-dependent supersymmetric solution. A short study on the dual CFT description of all the above states is given, including a derivation of the exact induced isometry map in the CFT side of the correspondence.Comment: latex, 27+1 pages. v2: comment on mixing of states in section 4.3 added, reference added, typos corrected, final versio

    Supersymmetric AdS5 black holes

    Full text link
    The first examples of supersymmetric, asymptotically AdS5, black hole solutions are presented. They form a 1-parameter family of solutions of minimal five-dimensional gauged supergravity. Their angular momentum can never vanish. The solutions are obtained by a systematic analysis of supersymmetric solutions with Killing horizons. Other new examples of such solutions are obtained. These include solutions for which the horizon is a homogeneous Nil or SL(2,R) manifold.Comment: 31 pages. v2: References and calculation of holographic stress tensor added. v3: Solutions preserve 2 supersymmetries. Our original claim that they preserve 4 supersymmetries was based on Ref. [30], which contains a mistake (the general timelike solution preserves 2, not 4, supersymmetries). Nothing else affecte

    T and S dualities and The cosmological evolution of the dilaton and the scale factors

    Get PDF
    Cosmologically stabilizing radion along with the dilaton is one of the major concerns of low energy string theory. One can hope that T and S dualities can provide a plausible answer. In this work we study the impact of S and T duality invariances on dilaton gravity. We have shown various instances where physically interesting models arise as a result of imposing the mentioned invariances. In particular S duality has a very privileged effect in that the dilaton equations partially decouple from the evolution of the scale factors. This makes it easy to understand the general rules for the stabilization of the dilaton. We also show that certain T duality invariant actions become S duality invariance compatible. That is they mimic S duality when extra dimensions stabilize.Comment: Corrected a misleading interpretation of the S duality transformation and a wrong comment on d=10. I thank A.Kaya for pointing this out to me in time. So the new version is dealing with d=10 only. Added references and corrected some typos. Minor re-editing. Omitted a section for elaboration in a further study. Corrected further typo

    Unconventional Cosmology

    Full text link
    I review two cosmological paradigms which are alternative to the current inflationary scenario. The first alternative is the "matter bounce", a non-singular bouncing cosmology with a matter-dominated phase of contraction. The second is an "emergent" scenario, which can be implemented in the context of "string gas cosmology". I will compare these scenarios with the inflationary one and demonstrate that all three lead to an approximately scale-invariant spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept. 12 - 17 2012, to be publ. in the proceedings; these lecture notes form an updated version of arXiv:1003.1745 and arXiv:1103.227

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore