206 research outputs found
A conserved Chlamydiota-specific Type III Secretion System effector linked to stress response.
Despite broad genetic variability, members of the Chlamydiota phylum share a crucial stress response phenotype, the formation of aberrant bodies. However, how this response operates upon exposure to different kinds of stressors is still largely unknown. In Waddlia chondrophila, wcw_0502 RNA levels are upregulated in aberrant bodies induced by iron starvation. Wcw_0502 is a putative type III secretion system (T3SS) effector and has a homologue in every known chlamydial species, regardless of their host. However, the upregulation of the wcw_0502 gene expression upon iron starvation is not conserved in other chlamydial species such as Chlamydia trachomatis, Chlamydia pneumoniae, Simkania negevensis or Estrella lausannensis. Moreover, among all the stressors examined, only heat shock induced a strong upregulation of wcw_0502 and its C. trachomatis homologue, ctl0271. A Controlling Inverted Repeat of Chaperone Expression sequence is present in the promoter region of wcw_0502 and its homologues. We hypothesized that in the absence of stress, the conserved repressor HrcA, in association with the Hsp60 chaperone, binds this sequence and represses transcription. A decreased occupancy of HrcA and Hsp60 at the wcw_0502 promoter region was observed in aberrant bodies induced by iron starvation when compared to reticulate bodies, which may lead to wcw_0502 upregulation. The precise function of this newly described T3SS effector is still unclear. A cystine knot-like domain, a structural feature never described before in bacterial proteins, was found in the C-terminal region of Wcw_0502. This structure is described as highly resistant to proteolytic, chemical and thermic stressors, an advantageous property for a secreted protein with an increased production during stresses that impact protein integrity
Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta).
With over a thousand species, the Rhodomelaceae is the most species-rich family of red algae. While its genera have been assigned to 14 tribes, the high-level classification of the family has never been evaluated with a molecular phylogeny. Here, we reassess its classification by integrating genome-scale phylogenetic analysis with observations of the morphological characters of clades. In order to resolve relationships among the main lineages of the family we constructed a phylogeny with 55 chloroplast genomes (52 newly determined). The majority of branches were resolved with full bootstrap support. We then added 266 rbcL, 125 18S rRNA gene and 143 cox1 sequences to construct a comprehensive phylogeny containing nearly half of all known species in the family (407 species in 89 genera). These analyses suggest the same subdivision into higher-level lineages, but included many branches with moderate or poor support. The circumscription for nine of the 13 previously described tribes was supported, but the Lophothalieae, Polysiphonieae, Pterosiphonieae and Herposiphonieae required revision, and five new tribes and one resurrected tribe were segregated from them. Rhizoid anatomy is highlighted as a key diagnostic character for the morphological delineation of several lineages. This work provides the most extensive phylogenetic analysis of the Rhodomelaceae to date and successfully resolves the relationships among major clades of the family. Our data show that organellar genomes obtained through high-throughput sequencing produce well-resolved phylogenies of difficult groups, and their more general application in algal systematics will likely permit deciphering questions about classification at many taxonomic levels
Analysis of chloroplast genomes and a supermatrix inform reclassification of the Rhodomelaceae (Rhodophyta).
With over a thousand species, the Rhodomelaceae is the most species-rich family of red algae. While its genera have been assigned to 14 tribes, the high-level classification of the family has never been evaluated with a molecular phylogeny. Here, we reassess its classification by integrating genome-scale phylogenetic analysis with observations of the morphological characters of clades. In order to resolve relationships among the main lineages of the family we constructed a phylogeny with 55 chloroplast genomes (52 newly determined). The majority of branches were resolved with full bootstrap support. We then added 266 rbcL, 125 18S rRNA gene and 143 cox1 sequences to construct a comprehensive phylogeny containing nearly half of all known species in the family (407 species in 89 genera). These analyses suggest the same subdivision into higher-level lineages, but included many branches with moderate or poor support. The circumscription for nine of the 13 previously described tribes was supported, but the Lophothalieae, Polysiphonieae, Pterosiphonieae and Herposiphonieae required revision, and five new tribes and one resurrected tribe were segregated from them. Rhizoid anatomy is highlighted as a key diagnostic character for the morphological delineation of several lineages. This work provides the most extensive phylogenetic analysis of the Rhodomelaceae to date and successfully resolves the relationships among major clades of the family. Our data show that organellar genomes obtained through high-throughput sequencing produce well-resolved phylogenies of difficult groups, and their more general application in algal systematics will likely permit deciphering questions about classification at many taxonomic levels
Closure of an iatrogenic tracheo-esophageal fistula with bronchoscopic gluing in a mechanically ventilated adult patient
Management of acquired nonmalignant tracheo-esophageal fistula (TEF) in mechanically ventilated patients is controversial. Surgical correction is often contraindicated because the high operative risk and spontaneous closure is unlikely due to the positive pressure ventilation. We present a case of successful closure of an iatrogenic TEF in a mechanically ventilated patient with bronchoscopic application of fibrin glue. The technique may be proposed in high-risk patients as either an alternative to surgery or as a first-line attempt before surgical correction
Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: Is riboflavin supplementation effective?
Background: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. Results: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and
Lymphocyte Infiltration Pattern and STING Expression Identify Different Prognostic Groups in Early Stage NSCLC
Factors influencing gastrointestinal tract and microbiota immune interaction in preterm infants
The role of microbial colonization is indispensable for keeping a balanced immune response in life. However, the events that regulate the establishment of the microbiota, their timing, and the way in which they interact with the host are not yet fully understood. Factors such as gestational age, mode of delivery, environment, hygienic measures, and diet influence the establishment of microbiota in the perinatal period. Environmental microbes constitute the most important group of exogenous stimuli in this critical time frame. However, the settlement of a stable gut microbiota in preterm infants is delayed compared to term infants. Preterm infants have an immature gastrointestinal tract and immune system which predisposes to infectious morbidity. Neonatal microbial dynamics and alterations in early gut microbiota may precede and/or predispose to diseases such as necrotizing enterocolitis (NEC), late-onset sepsis or others. During this critical period, nutrition is the principal contributor for immunological and metabolic development, and microbiological programming. Breast milk is a known source of molecules that act synergistically to protect the gut barrier and enhance the maturation of the gut-related immune response. Host-microbe interactions in preterm infants and the protective role of diet focused on breast milk impact are beginning to be unveiled.M.C. acknowledges a “Rio Hortega” Research Fellowship Grant (CM13/0017)
and M.V. acknowledges grants PI11/0313 and RD12/0026/0012 (Red SAMID)
from the Instituto Carlos III (Spanish Ministry of Economy and Competitivity).
M.C.C. and G.P-M. were supported by the grant AGL2013-47420-R from
the Spanish Ministry of Science and Innovation.Peer reviewe
Postural Control in Children with Cerebellar Ataxia
Controlling posture, i.e., governing the ensemble of involuntary muscular activities that manage body equilibrium, represents a demanding function in which the cerebellum plays a key role. Postural activities are particularly important during gait initiation when passing from quiet standing to locomotion. Indeed, several studies used such motor task for evaluating pathological conditions, including cerebellar disorders. The linkage between cerebellum maturation and the development of postural control has received less attention. Therefore, we evaluated postural control during quiet standing and gait initiation in children affected by a slow progressive generalized cerebellar atrophy (SlowP) or non-progressive vermian hypoplasia (Joubert syndrome, NonP), compared to that of healthy children (H). Despite the similar clinical evaluation of motor impairments in NonP and SlowP, only SlowP showed a less stable quiet standing and a shorter and slower first step than H. Moreover, a descriptive analysis of lower limb and back muscle activities suggested a more severe timing disruption in SlowP. Such differences might stem from the extent of cerebellar damage. However, literature reports that during childhood, neural plasticity of intact brain areas could compensate for cerebellar agenesis. We thus proposed that the difference might stem from disease progression, which contrasts the consolidation of compensatory strategies
- …
