317 research outputs found
A Novel Autosomal Dominant Inclusion Body Myopathy Linked to 7q22.1-31.1
We describe a novel autosomal dominant hereditary inclusion body myopathy (HIBM) that clinically mimics limb girdle muscular dystrophy in a Chinese family. We performed a detailed clinical assessment of 36 individuals spanning four generations. The age of onset ranged from the 30s to the 50s. Hip girdle, neck flexion and axial muscle weakness were involved at an early stage. This disease progressed slowly, and a shoulder girdle weakness appeared later in the disease course. Muscle biopsies showed necrotic, regenerating, and rimmed vacuolated fibers as well as congophilic inclusions in some of the fibers. Electron micrograph revealed cytoplasmic inclusions of 15–21 nm filaments. A genomewide scan and haplotype analyses were performed using an Illumina Linkage-12 DNA Analysis Kit (average spacing 0.58 cM), which traced the disease to a new locus on chromosome 7q22.1–31.1 with a maximum multi-point LOD score of 3.65. The critical locus for this unique disorder, which is currently referred to as hereditary inclusion body myopathy 4 (HIBM4), spans 8.78 Mb and contains 65 genes. This localization raises the possibility that one of the genes clustered within this region may be involved in this disorder
The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones
The sensitivity of the protein-folding environment to chaperone disruption can be highly tissue-specific. Yet, the organization of the chaperone system across physiological human tissues has received little attention. Through computational analyses of large-scale tissue transcriptomes, we unveil that the chaperone system is composed of core elements that are uniformly expressed across tissues, and variable elements that are differentially expressed to fit with tissue-specific requirements. We demonstrate via a proteomic analysis that the muscle-specific signature is functional and conserved. Core chaperones are significantly more abundant across tissues and more important for cell survival than variable chaperones. Together with variable chaperones, they form tissue-specific functional networks. Analysis of human organ development and aging brain transcriptomes reveals that these functional networks are established in development and decline with age. In this work, we expand the known functional organization of de novo versus stress-inducible eukaryotic chaperones into a layered core-variable architecture in multi-cellular organisms
UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) Binds to Alpha-Actinin 1: Novel Pathways in Skeletal Muscle?
Hereditary inclusion body myopathy (HIBM) is a rare neuromuscular disorder caused by mutations in GNE, the key enzyme in the biosynthetic pathway of sialic acid. While the mechanism leading from GNE mutations to the HIBM phenotype is not yet understood, we searched for proteins potentially interacting with GNE, which could give some insights about novel putative biological functions of GNE in muscle. We used a Surface Plasmon Resonance (SPR)-Biosensor based assay to search for potential GNE interactors in anion exchanged fractions of human skeletal muscle primary culture cell lysate. Analysis of the positive fractions by in vitro binding assay revealed alpha-actinin 1 as a potential interactor of GNE. The direct interaction of the two proteins was assessed in vitro by SPR-Biosensor based kinetics analysis and in a cellular environment by a co-immunoprecipitation assay in GNE overexpressing 293T cells. Furthermore, immunohistochemistry on stretched mouse muscle suggest that both GNE and alpha-actinin 1 localize to an overlapping but not identical region of the myofibrillar apparatus centered on the Z line. The interaction of GNE with alpha-actinin 1 might point to its involvement in alpha-actinin mediated processes. In addition these studies illustrate for the first time the expression of the non-muscle form of alpha-actinin, alpha-actinin 1, in mature skeletal muscle tissue, opening novel avenues for its specific function in the sarcomere. Although no significant difference could be detected in the binding kinetics of alpha-actinin 1 with either wild type or mutant GNE in our SPR biosensor based analysis, further investigation is needed to determine whether and how the interaction of GNE with alpha-actinin 1 in skeletal muscle is relevant to the putative muscle-specific function of alpha-actinin 1, and to the muscle-restricted pathology of HIBM
Impaired access of lymphocytes to neoplastic prostate tissue is associated with neoangiogenesis in the tumour site
Recent reports demonstrated that neovasculature of certain murine tumours inhibits migration of lymphocytes to malignant tissues. We examined the possible existence of this phenomenon in human prostate adenocarcinoma by relating extent, patterns and composition of leucocyte infiltrates in adenocarinoma specimens (N=28) to microvessel density and percentages of these vessels expressing adhesion molecules CD54, CD106 and CD62E. Specimens of nodular hyperplasia (N=30) were used as a control for nonmalignant prostate. Increased microvessel density was detected in foci of adenocarcinoma, as compared with adjacent benign areas (P=0.004) or hyperplastic specimens (P=0.001). Only CD54 was detected on prostate vasculature; percentages of CD54-expressing vessels in adenocarcinoma lesions and adjacent areas were higher than in hyperplasia (P=0.041 and P=0.014, respectively). Infiltrating leucocytes were either scattered diffusely in tissue or organised into clusters mainly composed of CD4-positive lymphocytes; smaller percentage of tissue was occupied by clustered infiltrates in adenocarcinoma foci (mean=0.7; median=0; range=0–5) than in adjacent tissue (mean=2.5; median=1; range=0–15; P=.021) and hyperplasia (mean=1.9; median=2; range=0–5; P=.006). In adenocarcinoma foci, microvessel density tended to negatively correlate with percentage of tissue occupied by an overall leucocyte infiltrate (mean=8.6; median=7.5; range=30) and negatively correlated with percentage of tissue occupied by clustered infiltrate (P=0.045). Percentage of CD54-expressing vessels positively correlated with percentage of tissue occupied by an overall (mean=12; median=10; range=30; P=0.01) and clustered (P=0.023) infiltrate in hyperplasia, whereas in carcinoma-adjacent benign areas, correlation was detected only for clustered infiltrates (P=0.02). The results indicate that impaired access of lymphocytes to malignant lesions is associated with increased numbers of newly formed blood vessels, whereas vascular CD54 likely contributes to extravasation of lymphocytes only in benign prostate tissue
Phosphofructo-1-Kinase Deficiency Leads to a Severe Cardiac and Hematological Disorder in Addition to Skeletal Muscle Glycogenosis
Mutations in the gene for muscle phosphofructo-1-kinase (PFKM), a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII). Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm−/−). Here, we show that Pfkm−/− mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm−/− mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm−/− mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm−/− mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies
Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients
In vivo magnetic resonance spectroscopy: basic methodology and clinical applications
The clinical use of in vivo magnetic resonance spectroscopy (MRS) has been limited for a long time, mainly due to its low sensitivity. However, with the advent of clinical MR systems with higher magnetic field strengths such as 3 Tesla, the development of better coils, and the design of optimized radio-frequency pulses, sensitivity has been considerably improved. Therefore, in vivo MRS has become a technique that is routinely used more and more in the clinic. In this review, the basic methodology of in vivo MRS is described—mainly focused on 1H MRS of the brain—with attention to hardware requirements, patient safety, acquisition methods, data post-processing, and quantification. Furthermore, examples of clinical applications of in vivo brain MRS in two interesting fields are described. First, together with a description of the major resonances present in brain MR spectra, several examples are presented of deviations from the normal spectral pattern associated with inborn errors of metabolism. Second, through examples of MR spectra of brain tumors, it is shown that MRS can play an important role in oncology
Post-traumatic anxiety associates with failure of the innate immune receptor TLR9 to evade the pro-inflammatory NFκB pathway
Post-traumatic anxiety notably involves inflammation, but its causes and functional significance are yet unclear. Here, we report that failure of the innate immune system Toll-like receptor 9 (TLR9) to limit inflammation is causally involved with anxiety-associated inflammation and that peripheral administration of specific oligonucleotide activators of TLR9 may prevent post-traumatic consequences in stressed mice. Suggesting involvement of NFκB-mediated enhancement of inflammatory reactions in the post-traumatic phenotype, we found association of serum interleukin-1β increases with symptoms severity and volumetric brain changes in post-traumatic stress disorder patients. In predator scent-stressed mice, the moderate NFκB-activating oligonucleotides mEN101 and its human ortholog BL-7040, but not the canonic NFκB activator oligonucleotide ODN1826, induced anxiolytic effects. In stressed mice, peripherally administered mEN101 prevented delayed stress-inducible serum interleukin-1β increases while limiting stress-characteristic hippocampal transcript modifications and the anxiety-induced EGR1-mediated neuronal activation. Attesting to the TLR9 specificity of this response, BL-7040 suppressed NFκB-mediated luciferase in transfected cells co-expressing TLR9, but not other TLRs. Furthermore, TLR9−/− mice were mEN101 and BL-7040 resistant and presented unprovoked anxiety-like behavior and anxiety-characteristic hippocampal transcripts. Our findings demonstrate functional relevance of TLR9 in protecting stressed mammals from overreacting to traumatic experiences and suggest using oligonucleotide-mediated peripheral TLR9 activation to potentiate the innate immune system and prevent post-traumatic inflammation and anxiety
Integration of maternal genome into the neonate genome through breast milk mRNA transcripts and reverse transcriptase
- …
