792 research outputs found
The Role of Child and Youth Participation in Development Effectiveness: A literature review
Eco-industrial transition: A vision for economic and socio-ecological renewal at Swanbank
Value-based Land Remediation: Improved Decision-making for Contaminated Land (CRC CARE Technical Report No. 35)
Green Chrysalis - Small and medium-sized enterprises: innovation and transformation towards Australia's low-carbon economy
Landfill Futures: : National Guideline Document
This report looks at the past and present roles of landfills in Australian waste management and considers the requirements for a sustainable future. The research used a test case to apply an integrated resource planning model to waste. The results suggest that disposal to landfill may be an expensive and less preferred option compared to others, in many cases, but still have a role to play in specific contexts where the costs of other options are higher
A Comparison of the Wholesale Model and the Agency Model in Differentiated Markets
We compare the wholesale model and the agency model that characterise a vertical relation in a bilateral duopoly framework. Results suggest that the agency model may be regarded as an example of retailer power resale price maintenance and provide an economic view of why restraints of this kind should be evaluated under the rule of reason. While competition is more likely to be undercut under the agency model, relative to the wholesale model, the agency model benefits consumers by offering relatively lower retail prices and greater demand
The Role of the Mucus Barrier in Digestion
Mucus forms a protective layer across a variety of epithelial surfaces. In the gastrointestinal (GI) tract, the barrier has to permit the uptake of nutrients, while excluding potential hazards, such as pathogenic bacteria. In this short review article, we look at recent literature on the structure, location, and properties of the mammalian intestinal secreted mucins and the mucus layer they form over a wide range of length scales. In particular, we look at the structure of the gel-forming glycoprotein MUC2, the primary intestinal secreted mucin, and the influence this has on the properties of the mucus layer. We show that, even at the level of the protein backbone, MUC2 is highly heterogeneous and that this is reflected in the networks it forms. It is evident that a combination of charge and pore size determines what can diffuse through the layer to the underlying gut epithelium. This information is important for the targeted delivery of bioactive molecules, including nutrients and pharmaceuticals, and for understanding how GI health is maintained
Computer Simulation of PMSM Motor with Five Phase Inverter Control using Signal Processing Techniques
The signal processing techniques and computer simulation play an important role in the fault diagnosis and tolerance of all types of machines in the first step of design. Permanent magnet synchronous motor (PMSM) and five phase inverter with sine wave pulse width modulation (SPWM) strategy is developed. The PMSM speed is controlled by vector control. In this work, a fault tolerant control (FTC) system in the PMSM using wavelet switching is introduced. The feature extraction property of wavelet analysis used the error as obtained by the wavelet de-noised signal as input to the mechanism unit to decide the healthy system. The diagnosis algorithm, which depends on both wavelet and vector control to generate PWM as current based manage any parameter variation. An open-end phase PMSM has a larger range of speed regulation than normal PMSM. Simulation results confirm the validity and effectiveness of the switching strategy
No attenuation of gastric distress or benefit to performance with adaptation to octanoate-rich esterified oils in female cyclists
Quasi-Zero Dimensional Halide Perovskite Derivates: Synthesis, Status, and Opportunity
In recent decades, many technological advances have been enabled by nanoscale phenomena, giving rise to the field of nanotechnology. In particular, unique optical and electronic phenomena occur on length scales less than 10 nanometres, which enable novel applications. Halide perovskites have been the focus of intense research on their optoelectronic properties and have demonstrated impressive performance in photovoltaic devices and later in other optoelectronic technologies, such as lasers and light-emitting diodes. The most studied crystalline form is the three-dimensional one, but, recently, the exploration of the low-dimensional derivatives has enabled new sub-classes of halide perovskite materials to emerge with distinct properties. In these materials, low-dimensional metal halide structures responsible for the electronic properties are separated and partially insulated from one another by the (typically organic) cations. Confinement occurs on a crystal lattice level, enabling bulk or thin-film materials that retain a degree of low-dimensional character. In particular, quasi-zero dimensional perovskite derivatives are proving to have distinct electronic, absorption, and photoluminescence properties. They are being explored for various technologies beyond photovoltaics (e.g. thermoelectrics, lasing, photodetectors, memristors, capacitors, LEDs). This review brings together the recent literature on these zero-dimensional materials in an interdisciplinary way that can spur applications for these compounds. The synthesis methods, the electrical, optical, and chemical properties, the advances in applications, and the challenges that need to be overcome as candidates for future electronic devices have been covered
- …
