1,842 research outputs found
Electromagnetically Induced Transparency in strongly interacting Rydberg Gases
We develop an efficient Monte-Carlo approach to describe the optical response
of cold three-level atoms in the presence of EIT and strong atomic
interactions. In particular, we consider a "Rydberg-EIT medium" where one
involved level is subject to large shifts due to strong van der Waals
interactions with surrounding Rydberg atoms. We find excellent agreement with
much more involved quantum calculations and demonstrate its applicability over
a wide range of densities and interaction strengths. The calculations show that
the nonlinear absorption due to Rydberg-Rydberg atom interactions exhibits
universal behavior
Excitation transport through Rydberg dressing
We show how to create long range interactions between alkali-atoms in
different hyper-fine ground states, allowing coherent electronic quantum state
migration. The scheme uses off resonant dressing with atomic Rydberg states,
exploiting the dipole-dipole excitation transfer that is possible between
those. Actual population in the Rydberg state is kept small. Dressing offers
large advantages over the direct use of Rydberg levels: It reduces ionisation
probabilities and provides an additional tuning parameter for life-times and
interaction-strengths. We present an effective Hamiltonian for the ground-state
manifold and show that it correctly describes the full multi-state dynamics for
up to 5 atoms.Comment: 22 pages + 6 pages appendices, 8 figures, replaced with revised
version, added journal referenc
Two-dimensional Rydberg gases and the quantum hard squares model
We study a two-dimensional lattice gas of atoms that are photo-excited to
high-lying Rydberg states in which they interact via the van-der-Waals
interaction. We explore the regime of dominant nearest neighbor interaction
where this system is intimately connected to a quantum version of Baxter's hard
squares model. We show that the strongly correlated ground state of the Rydberg
gas can be analytically described by a projected entangled pair state that
constitutes the ground state of the quantum hard squares model. This
correspondence allows us to identify a first order phase boundary where the
Rydberg gas undergoes a transition from a disordered (liquid) phase to an
ordered (solid) phase
Biophysical and economic water productivity of dual-purpose cattle farming
This study analyzes key factors influencing water productivity in cattle rearing, particularly in contexts characterized by water scarcity. This was done through year-round monitoring of on-farm practices within five smallholder farms located in the Saïss area (northern Morocco). The on-farm monitoring protocol consisted of characterizing: (i) volumes of water used for fodder production and distinguished by source (rainfall, surface irrigation and groundwater), (ii) virtual water contained in off-farm feed resources, (iii) total forage biomass production, (iv) dietary rations fed to lactating cows and their calves and (v) milk output and live weight gain. Findings reveal a mean water footprint of 1.62±0.81 and 8.44±1.09 m3/kg of milk and of live weight gain, respectively. Groundwater represented only 13.1% and 2.2% of the total water used to get milk and live weight gain, respectively, while rainfall represented 53.0% and 48.1% of the total water for milk and live weight gain, respectively. The remaining water volumes used came from surface irrigation water (7.4% for milk and 4.0% for live weight gain) and from virtual water (26.5% for milk and 44.7% for live weight gain). The results also revealed a relatively small gross margin per m3 of water used by the herd, not exceeding an average value of US $ 0.05, when considering both milk and live weight. Given the large variability in farm performances, which affect water productivity in cattle rearing throughout the production process, we highlight the potential for introducing a series of interventions that are aimed at saving water, while concurrently improving efficiency in milk production and live weight gain. These interventions should target the chain of production functions that are implemented throughout the process of water productivity in cattle rearing. Moreover, these interventions are of particular importance given our findings that livestock production depends largely upon rainfall, rather than groundwater, in an area afflicted with sustained droughts, overexploitation of groundwater resources and growing water scarcity. (Résumé d'auteur
Dephasing of Mollow Triplet Sideband Emission of a Resonantly Driven Quantum Dot in a Microcavity
Detailed properties of resonance fluorescence from a single quantum dot in a
micropillar cavity are investigated, with particular focus on emission
coherence in dependence on optical driving field power and detuning.
Power-dependent series over a wide range could trace characteristic Mollow
triplet spectra with large Rabi splittings of GHz. In
particular, the effect of dephasing in terms of systematic spectral broadening
of the Mollow sidebands is observed as a strong fingerprint
of excitation-induced dephasing. Our results are in excellent agreement with
predictions of a recently presented model on phonon-dressed QD Mollow triplet
emission in the cavity-QED regime
Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity
We demonstrate a single-photon collection efficiency of from
a quantum dot in a low-Q mode of a photonic-crystal cavity with a single-photon
purity of recorded above the saturation power. The high
efficiency is directly confirmed by detecting up to kilocounts per
second on a single-photon detector on another quantum dot coupled to the cavity
mode. The high collection efficiency is found to be broadband, as is explained
by detailed numerical simulations. Cavity-enhanced efficient excitation of
quantum dots is obtained through phonon-mediated excitation and under these
conditions, single-photon indistinguishability measurements reveal long
coherence times reaching ns in a weak-excitation regime. Our work
demonstrates that photonic crystals provide a very promising platform for
highly integrated generation of coherent single photons including the efficient
out-coupling of the photons from the photonic chip.Comment: 13 pages, 8 figures, submitte
Adiabatic entanglement transport in Rydberg aggregates
We consider the interplay between excitonic and atomic motion in a regular,
flexible chain of Rydberg atoms, extending our recent results on entanglement
transport in Rydberg chains [W\"uster et al., Phys.Rev.Lett 105 053004 (2010)].
In such a Rydberg chain, similar to molecular aggregates, an electronic
excitation is delocalised due to long range dipole-dipole interactions among
the atoms. The transport of an exciton that is initially trapped by a chain
dislocation is strongly coupled to nuclear dynamics, forming a localised pulse
of combined excitation and displacement. This pulse transfers entanglement
between dislocated atoms adiabatically along the chain. Details about the
interaction and the preparation of the initial state are discussed. We also
present evidence that the quantum dynamics of this complex many-body problem
can be accurately described by selected quantum-classical methods, which
greatly simplify investigations of excitation transport in flexible chains
- …
