12,248 research outputs found
Recommended from our members
Rethinking reactive halogen budgets in the midlatitude lower stratosphere
Current stratospheric models have difficulties in fully explaining the observed midlatitude ozone depletion in the lowermost stratosphere, particularly near the tropopause. Such models assume that only long-lived source gases provide significant contributions to the stratospheric halogen budget, while all the short-lived compounds are removed in the troposphere, the products being rained out. Here we show this assumption to be flawed. Using bromine species as an example, we show that in the lowermost stratosphere, where the observed midlatitude ozone trend maximizes, bromoform (CHBr3) alone likely contributes more inorganic bromine than all the conventional long-lived sources (halons and methyl bromide) combined. Copyright 1999 by the American Geophysical Union
LHC Coverage of RPV MSSM with Light Stops
We examine the sensitivity of recent LHC searches to signatures of
supersymmetry with R-parity violation (RPV). Motivated by naturalness of the
Higgs potential, which would favor light third-generation squarks, and the
stringent LHC bounds on spectra in which the gluino or first and second
generation squarks are light, we focus on scenarios dominated by the pair
production of light stops. We consider the various possible direct and cascade
decays of the stop that involve the trilinear RPV operators. We find that in
many cases, the existing searches exclude stops in the natural mass range and
beyond. However, typically there is little or no sensitivity to cases dominated
by UDD operators or LQD operators involving taus. We propose several ideas for
searches which could address the existing gaps in experimental coverage of
these signals.Comment: 41 pages, 12 figures; v2: included new searches (see footnote 10),
minor corrections and improvement
First global analysis of SEASAT scatterometer winds and potential for meteorological research
The first global wind fields from SEASAT-A scatterometer (SASS) data were produced. Fifteen days of record are available on tape, with unique wind directions indicated for each observation. The methodology of the production of this data set is described, as well as the testing of its validity. A number of displays of the data, on large and small scales, analyzed and gridded, are provided
Upgrade of the ATLAS Muon Trigger for the SLHC
The outer shell of the ATLAS experiment at the LHC consists of a system of
toroidal air-core magnets in order to allow for the precise measurement of the
transverse momentum p of muons, which in many physics channels are a
signature of interesting physics processes. For the precise determination of
the muon momentum Monitored Drift Tube chambers (MDT) with high position
accuracy are used, while for the fast identification of muon tracks chambers
with high time resolution are used, able to select muons above a predefined
p threshold for use in the first Level of the ATLAS triggering system
(Level-1 trigger). When the luminosity of the LHC will be upgraded to 4-5 times
the present nominal value (SLHC) in about a decade from now, an improvement of
the selectivity of the ATLAS Level-1 triggering system will be mandatory in
order to cope with the maximum allowed trigger rate of 100 kHz. For the Level-1
trigger of the ATLAS muon spectrometer this means an increase of the p
threshold for single muons. Due to the limited spatial resolution of the
trigger chambers, however, the selectivity for tracks above ~20 GeV/c is
insufficient for an effective reduction of the Level-1 rate. We describe how
the track coordinates measured in the MDT precision chambers can be used to
decisively improve the selectivity for high momentum tracks. The resulting
increase in latency will also be discussed.Comment: These are the proceedings of a presentation given at the Topical
Workshop of Electronics for Particle Physics 2010 in Aachen, Germany (sept.,
20-24, 2010
Coast-ocean-atmosphere-ocean mesoscale interaction
In the case of cold air outbreaks, the combination of the coastal shape and the sea surface temperature (SST) pattern have a profound effect in establishing a low level mesoscale atmospheric circulation as a result of differential heating due to both variations in overwater path length and the SST. A convergence (or divergence) line then forms along a line exactly downwind of the major bend in the coastline. All this is consistent with the structure of the cloud patterns seen in a high resolution Landsat picture of the cloud streets and the major features are simulated well with a boundary layer model. The dominant convergence line is marked by notably larger clouds. To its east the convective roll clouds grow downstream in accord with the deepening of the boundary layer. To its west (i.e., coastal side) where the induced pressure field forces a strong westerly component in the boundary layer, the wind shear across the inversion gives rise to Kelvin-Helmholtz waves and billow clouds whose orientation is perpendicular to the shear vector and to the major convergence line. The induced mesoscale circulation will feedback on the ocean by intensifying the wind generated ocean wave growth and altering their orientation. Coastal cyclogenesis is due in large part not only to the fluxes of heat and moisture from the ocean, but particularly to the differential heating and moistening of the boundary layer air when the air trajectories pass over a well defined pattern of SST
Measurement of the rapidity-even dipolar flow in Pb-Pb collisions with the ATLAS detector
The rapidity-even dipolar flow v1 associated with dipole asymmetry in the
initial geometry is measured over a broad range in transverse momentum 0.5
GeV<pT<9 GeV, and centrality (0-50)% in Pb-Pb collisions at sqrt(s_NN)=2.76
TeV, recorded by the ATLAS experiment at the LHC. The v1 coefficient is
determined via a two-component fit of the first order Fourier coefficient,
v_{1,1}= cos \Delta\phi, of two-particle correlations in azimuthal angle
\Delta\phi=\phi_a-\phi_b as a function of pT^a and pT^b. This fit is motivated
by the finding that the pT dependence of v_{1,1}(pT^a,pT^b) data are consistent
with the combined contributions from a rapidity-even v1 and global momentum
conservation. The magnitude of the extracted momentum conservation component
suggests that the system conserving momentum involves only a subset of the
event (spanning about 3 units in \eta in central collisions). The extracted v1
is observed to cross zero at pT~1.0 GeV, reaches a maximum at 4-5 GeV with a
value comparable to that for v3, and decreases at higher pT. Interestingly, the
magnitude of v1 at high pT exceeds the value of the v3 in all centrality
interval and exceeds the value of v2 in central collisions. This behavior
suggests that the path-length dependence of energy loss and initial dipole
asymmetry from fluctuations corroborate to produce a large dipolar anisotropy
for high pT hadrons, making the v1 a valuable probe for studying the jet
quenching phenomena.Comment: 9 pages, 6 figures. Proceedings for the 28th Winter Workshop on
Nuclear Dynamics, Dorado Del Mar, Puerto Rico, United States Of America, 7 -
14 Apr 201
What did HERA teach us about the structure of the proton?
Starting in 2008 the H1 and ZEUS experiments have been combining their data
in order to provide the most complete and accurate set of deep-inelastic data
as the legacy of HERA. The present review presents these combinations, both
published and preliminary, and explores how they have been used to give
information on the structure of the proton. The HERAPDF parton distribution
functions (PDFs) are presented and compared with other current PDFs and with
data from the Tevatron and LHC colliders.Comment: 49 pages, 49 figures, to be published in J.Phys.
ATLAS silicon module assembly and qualification tests at IFIC Valencia
ATLAS experiment, designed to probe the interactions of particles emerging
out of proton proton collisions at energies of up to 14 TeV, will assume
operation at the Large Hadron Collider (LHC) at CERN in 2007. This paper
discusses the assembly and the quality control tests of forward detector
modules for the ATLAS silicon microstrip detector assembled at the Instituto de
Fisica Corpuscular (IFIC) in Valencia. The construction and testing procedures
are outlined and the laboratory equipment is briefly described. Emphasis is
given on the module quality achieved in terms of mechanical and electrical
stability.Comment: 23 pages, 38 EPS figures, uses JINST LaTeX clas
A Search for Vector Diquarks at the CERN LHC
Resonant production of the first generation vector diquarks at the CERN Large
Hadron Collider (LHC) is investigated. It is shown that the LHC will be able to
discover vector diquarks with masses up to 9 TeV for quark-diquark-quark
coupling alpha_(D)=0.1 and 4 TeV for alpha_(D)=5x10^(-4).Comment: 9 pages, 4 tables, 4 figure
- …
