6,205 research outputs found
Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks
We present a lattice calculation of the hadronic vacuum polarization and the
lowest-order hadronic contribution to the muon anomalous magnetic moment, a_\mu
= (g-2)/2, using 2+1 flavors of improved staggered fermions. A precise fit to
the low-q^2 region of the vacuum polarization is necessary to accurately
extract the muon g-2. To obtain this fit, we use staggered chiral perturbation
theory, including the vector particles as resonances, and compare these to
polynomial fits to the lattice data. We discuss the fit results and associated
systematic uncertainties, paying particular attention to the relative
contributions of the pions and vector mesons. Using a single lattice spacing
ensemble (a=0.086 fm), light quark masses as small as roughly one-tenth the
strange quark mass, and volumes as large as (3.4 fm)^3, we find a_\mu^{HLO} =
(713 \pm 15) \times 10^{-10} and (748 \pm 21) \times 10^{-10} where the error
is statistical only and the two values correspond to linear and quadratic
extrapolations in the light quark mass, respectively. Considering systematic
uncertainties not eliminated in this study, we view this as agreement with the
current best calculations using the experimental cross section for e^+e^-
annihilation to hadrons, 692.4 (5.9) (2.4)\times 10^{-10}, and including the
experimental decay rate of the tau lepton to hadrons, 711.0 (5.0)
(0.8)(2.8)\times 10^{-10}. We discuss several ways to improve the current
lattice calculation.Comment: 44 pages, 4 tables, 17 figures, more discussion on matching the chpt
calculation to lattice calculation, typos corrected, refs added, version to
appear in PR
Current Physics Results from Staggered Chiral Perturbation Theory
We review several results that have been obtained using lattice QCD with the
staggered quark formulation. Our focus is on the quantities that have been
calculated numerically with low statistical errors and have been extrapolated
to the physical quark mass limit and continuum limit using staggered chiral
perturbation theory. We limit our discussion to a brief introduction to
staggered quarks, and applications of staggered chiral perturbation theory to
the pion mass, decay constant, and heavy-light meson decay constants.Comment: 18 pages, 4 figures, commissioned review article, to appear in Mod.
Phys. Lett.
Constructing and exploring wells of energy landscapes
Landscape paradigm is ubiquitous in physics and other natural sciences, but
it has to be supplemented with both quantitative and qualitatively meaningful
tools for analyzing the topography of a given landscape. We here consider
dynamic explorations of the relief and introduce as basic topographic features
``wells of duration and altitude ''. We determine an intrinsic
exploration mechanism governing the evolutions from an initial state in the
well up to its rim in a prescribed time, whose finite-difference approximations
on finite grids yield a constructive algorithm for determining the wells. Our
main results are thus (i) a quantitative characterization of landscape
topography rooted in a dynamic exploration of the landscape, (ii) an
alternative to stochastic gradient dynamics for performing such an exploration,
(iii) a constructive access to the wells and (iv) the determination of some
bare dynamic features inherent to the landscape. The mathematical tools used
here are not familiar in physics: They come from set-valued analysis
(differential calculus of set-valued maps and differential inclusions) and
viability theory (capture basins of targets under evolutionary systems) which
have been developed during the last two decades; we therefore propose a minimal
appendix exposing them at the end of this paper to bridge the possible gap.Comment: 28 pages, submitted to J. Math. Phys -
Staggered Chiral Perturbation Theory at Next-to-Leading Order
We study taste and Euclidean rotational symmetry violation for staggered
fermions at nonzero lattice spacing using staggered chiral perturbation theory.
We extend the staggered chiral Lagrangian to O(a^2 p^2), O(a^4) and O(a^2 m),
the orders necessary for a full next-to-leading order calculation of
pseudo-Goldstone boson masses and decay constants including analytic terms. We
then calculate a number of SO(4) taste-breaking quantities, which involve only
a small subset of these NLO operators. We predict relationships between SO(4)
taste-breaking splittings in masses, pseudoscalar decay constants, and
dispersion relations. We also find predictions for a few quantities that are
not SO(4) breaking. All these results hold also for theories in which the
fourth-root of the fermionic determinant is taken to reduce the number of quark
tastes; testing them will therefore provide evidence for or against the
validity of this trick.Comment: 39 pages, 6 figures (v3: corrected technical error in enumeration of
a subset of NLO operators; final conclusions unchanged
Order of the Chiral and Continuum Limits in Staggered Chiral Perturbation Theory
Durr and Hoelbling recently observed that the continuum and chiral limits do
not commute in the two dimensional, one flavor, Schwinger model with staggered
fermions. I point out that such lack of commutativity can also be seen in
four-dimensional staggered chiral perturbation theory (SChPT) in quenched or
partially quenched quantities constructed to be particularly sensitive to the
chiral limit. Although the physics involved in the SChPT examples is quite
different from that in the Schwinger model, neither singularity seems to be
connected to the trick of taking the nth root of the fermion determinant to
remove unwanted degrees of freedom ("tastes"). Further, I argue that the
singularities in SChPT are absent in most commonly-computed quantities in the
unquenched (full) QCD case and do not imply any unexpected systematic errors in
recent MILC calculations with staggered fermions.Comment: 14 pages, 1 figure. v3: Spurious symbol, introduced by conflicting
tex macros, removed. Clarification of discussion in several place
Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory
We calculate the form factors for the semileptonic decays of heavy-light
pseudoscalar mesons in partially quenched staggered chiral perturbation theory
(\schpt), working to leading order in , where is the heavy quark
mass. We take the light meson in the final state to be a pseudoscalar
corresponding to the exact chiral symmetry of staggered quarks. The treatment
assumes the validity of the standard prescription for representing the
staggered ``fourth root trick'' within \schpt by insertions of factors of 1/4
for each sea quark loop. Our calculation is based on an existing partially
quenched continuum chiral perturbation theory calculation with degenerate sea
quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered
(and non-degenerate) case. As a by-product, we obtain the continuum partially
quenched results with non-degenerate sea quarks. We analyze the effects of
non-leading chiral terms, and find a relation among the coefficients governing
the analytic valence mass dependence at this order. Our results are useful in
analyzing lattice computations of form factors and when the
light quarks are simulated with the staggered action.Comment: 53 pages, 8 figures, v2: Minor correction to the section on finite
volume effects, and typos fixed. Version to be published in Phys. Rev.
The Kaon B-parameter in Mixed Action Chiral Perturbation Theory
We calculate the kaon B-parameter, B_K, in chiral perturbation theory for a
partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and
staggered sea quarks. We find that the resulting expression is similar to that
in the continuum, and in fact has only two additional unknown parameters. At
one-loop order, taste-symmetry violations in the staggered sea sector only
contribute to flavor-disconnected diagrams by generating an O(a^2) shift to the
masses of taste-singlet sea-sea mesons. Lattice discretization errors also give
rise to an analytic term which shifts the tree-level value of B_K by an amount
of O(a^2). This term, however, is not strictly due to taste-breaking, and is
therefore also present in the expression for B_K for pure G-W lattice fermions.
We also present a numerical study of the mixed B_K expression in order to
demonstrate that both discretization errors and finite volume effects are small
and under control on the MILC improved staggered lattices.Comment: 29 pages, 4 figures; Expanded spurion discussion, other discussions
clarified, version to appear in PR
- …
