784 research outputs found
An Energy Feedback System for the MIT/Bates Linear Accelerator
We report the development and implementation of an energy feedback system for
the MIT/Bates Linear Accelerator Center. General requirements of the system are
described, as are the specific requirements, features, and components of the
system unique to its implementation at the Bates Laboratory. We demonstrate
that with the system in operation, energy fluctuations correlated with the 60
Hz line voltage and with drifts of thermal origin are reduced by an order of
magnitude
Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy
The functional properties of many technological surfaces in biotechnology,
electronics, and mechanical engineering depend to a large degree on the
individual features of their nanoscale surface texture, which in turn are a
function of the surface manufacturing process. Among these features, the
surface irregularities and self-similarity structures at different spatial
scales, especially in the range of 1 to 100 nm, are of high importance because
they greatly affect the surface interaction forces acting at a nanoscale
distance. An analytical method for parameterizing the surface irregularities
and their correlations in nanosurfaces imaged by atomic force microscopy (AFM)
is proposed. In this method, flicker noise spectroscopy - a statistical physics
approach - is used to develop six nanometrological parameters characterizing
the high-frequency contributions of jump- and spike-like irregularities into
the surface texture. These contributions reflect the stochastic processes of
anomalous diffusion and inertial effects, respectively, in the process of
surface manufacturing. The AFM images of the texture of corrosion-resistant
magnetite coatings formed on low-carbon steel in hot nitrate solutions with
coating growth promoters at different temperatures are analyzed. It is shown
that the parameters characterizing surface spikiness are able to quantify the
effect of process temperature on the corrosion resistance of the coatings. It
is suggested that these parameters can be used for predicting and
characterizing the corrosion-resistant properties of magnetite coatings.Comment: 7 pages, 3 figures, 2 tables; to be published in Analys
The Strange Quark Contribution to the Proton's Magnetic Moment
We report a new determination of the strange quark contribution to the
proton's magnetic form factor at a four-momentum transfer Q2 = 0.1 (GeV/c)^2
from parity-violating e-p elastic scattering. The result uses a revised
analysis of data from the SAMPLE experiment which was carried out at the
MIT-Bates Laboratory. The data are combined with a calculation of the proton's
axial form factor GAe to determine the strange form factor GMs(Q2=0.1)=0.37 +-
0.20 +- 0.26 +- 0.07. The extrapolation of GMs to its Q2=0 limit and comparison
with calculations is also discussed.Comment: 6 pages, 1 figure, submitted to Phys. Lett.
Qweak: A Precision Measurement of the Proton's Weak Charge
The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the
parity-violating asymmetry in elastic scattering at very low of a
longitudinally polarized electron beam on a proton target. The experiment will
measure the weak charge of the proton, and thus the weak mixing angle at low
energy scale, providing a precision test of the Standard Model. Since the value
of the weak mixing angle is approximately 1/4, the weak charge of the proton
is suppressed in the Standard Model, making it
especially sensitive to the value of the mixing angle and also to possible new
physics. The experiment is approved to run at JLab, and the construction plan
calls for the hardware to be ready to install in Hall C in 2007. The
theoretical context of the experiment and the status of its design are
discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003
proceeding
Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor
We report a new measurement of the parity-violating asymmetry in elastic electron scattering from the proton at backward scattering angles. This asymmetry is sensitive to the strange magnetic form factor of the proton as well as electroweak axial radiative corrections. The new measurement of A = -4.92±0.61±0.73 ppm provides a significant constraint on these quantities. The implications for the strange magnetic form factor are discussed in the context of theoretical estimates for the axial corrections
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Parity Violation in Elastic Electron-Proton Scattering and the Proton's Strange Magnetic Form Factor
We report a new measurement of the parity-violating asymmetry in elastic
electron scattering from the proton at backward scattering angles. This
asymmetry is sensitive to the strange magnetic form factor of the proton as
well as electroweak axial radiative corrections. The new measurement of A=-4.92
+- 0.61 +- 0.73 ppm provides a significant constraint on these quantities. The
implications for the strange magnetic form factor are discussed in the context
of theoretical estimates for the axial corrections.Comment: 4 pages, 3 figures, submitted to Physical Review Letters, Sept 199
Parity-violating Electron Deuteron Scattering and the Proton's Neutral Weak Axial Vector Form Factor
We report on a new measurement of the parity-violating asymmetry in
quasielastic electron scattering from the deuteron at backward angles at Q2=
0.038 (GeV/c)2. This quantity provides a determination of the neutral weak
axial vector form factor of the nucleon, which can potentially receive large
electroweak corrections. The measured asymmetry A=-3.51 +/- 0.57(stat) +/-
0.58(sys)ppm is consistent with theoretical predictions. We also report on
updated results of the previous experiment at Q2=0.091 (GeV/c)2, which are also
consistent with theoretical predictions.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Cross Section Measurements of Charged Pion Photoproduction in Hydrogen and Deuterium from 1.1 to 5.5 GeV
The differential cross section for the gamma +n --> pi- + p and the gamma + p
--> pi+ n processes were measured at Jefferson Lab. The photon energies ranged
from 1.1 to 5.5 GeV, corresponding to center-of-mass energies from 1.7 to 3.4
GeV. The pion center-of-mass angles varied from 50 degree to 110 degree. The
pi- and pi+ photoproduction data both exhibit a global scaling behavior at high
energies and high transverse momenta, consistent with the constituent counting
rule prediction and the existing pi+ data. The data suggest possible
substructure of the scaling behavior, which might be oscillations around the
scaling value. The data show an enhancement in the scaled cross section at
center-of-mass energy near 2.2 GeV. The differential cross section ratios at
high energies and high transverse momenta can be described by calculations
based on one-hard-gluon-exchange diagrams.Comment: 18 pages, 19 figure
Inclusive Electron-Nucleus Scattering at Large Momentum Transfer
Inclusive electron scattering is measured with 4.045 GeV incident beam energy
from C, Fe and Au targets. The measured energy transfers and angles correspond
to a kinematic range for Bjorken and momentum transfers from . When analyzed in terms of the y-scaling function the data show
for the first time an approach to scaling for values of the initial nucleon
momenta significantly greater than the nuclear matter Fermi-momentum (i.e. GeV/c).Comment: 5 pages TEX, 5 Postscript figures also available at
http://www.krl.caltech.edu/preprints/OAP.htm
- …
