501 research outputs found

    The continuum of spreading depolarizations in acute cortical lesion development: Examining Leao's legacy.

    Get PDF
    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leao's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage

    Landscapes in transition: an analysis of sustainable policy initiatives and emerging corporate commitments in the palm oil industry

    Get PDF
    The recent Southeast Asian haze crisis has generated intense public scrutiny over the rate, methods and types of landscape change in the tropics. Debate has centred on the environmental impacts of large-scale agricultural expansion, particularly the associated loss of high carbon stock forest and forests of high conservation value. Focusing on palm oil—a versatile food crop and source of bioenergy—this paper analyses national, international and corporate policy initiatives in order to clarify the current and future direction of oil palm expansion in Malaysia and Indonesia. The policies of ‘zero burn’, ‘no deforestation’ and ‘no planting on peatlands’ are given particular emphasis in the paper. The landscape implications of corporate commitments are analysed to determine the amount of land, land types and geographies that could be affected in the future. The paper concludes by identifying key questions related to the further study of sustainable land use policy and practice

    Distributive politics and regional development: assessing the territorial distribution of Turkey’s public investment

    Get PDF
    Turkey is often perceived as a country with low bureaucratic capacity and prone to political manipulation and ‘pork-barrel’. This article tests whether this is the case, by analysing the extent to which politics, rather than equity and efficiency criteria, have determined the geographical allocation of public investment across the 81 provinces of Turkey between 2005 and 2012. The results show that although the Turkish government has indeed channelled public expenditures to reward its core constituencies, socioeconomic factors remained the most relevant predictors of investment. Moreover, in contrast to official regional development policy principles, we uncover the concentration of public investment in areas with comparatively higher levels of development. We interpret this as the state bureaucracy’s intentional strategy of focussing on efficiency by concentrating resources on ‘the better off among the most in need’

    Statistical Modeling of Single Target Cell Encapsulation

    Get PDF
    High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems.Wallace H. Coulter Foundation (Young Investigator in Bioengineering Award)National Institutes of Health (U.S.) (Grant R01AI081534)National Institutes of Health (U.S.) (Grant R21AI087107

    Phosphomimetic Modulation of eNOS Improves Myocardial Reperfusion and Mimics Cardiac Postconditioning in Mice

    Get PDF
    Objective: Myocardial infarction resulting from ischemia-reperfusion injury can be reduced by cardiac postconditioning, in which blood flow is restored intermittently prior to full reperfusion. Although key molecular mechanisms and prosurvival pathways involved in postconditioning have been identified, a direct role for eNOS-derived NO in improving regional myocardial perfusion has not been shown. The objective of this study is to measure, with high temporal and spatial resolution, regional myocardial perfusion during ischemia-reperfusion and postconditioning, in order to determine the contribution of regional blood flow effects of NO to infarct size and protection. Methods and Results: We used myocardial contrast echocardiography to measure regional myocardial blood flow in mice over time. Reperfusion after myocardial ischemia-reperfusion injury is improved by postconditioning, as well as by phosphomimetic eNOS modulation. Knock-in mice expressing a phosphomimetic S1176D form of eNOS showed improved myocardial reperfusion and significantly reduced infarct size. eNOS knock-out mice failed to show cardioprotection from postconditioning. The size of the no-reflow zone following ischemia-reperfusion is substantially reduced by postconditioning and by the phosphomimetic eNOS mutation. Conclusions and Significance: Using myocardial contrast echocardiography, we show that temporal dynamics of regional myocardial perfusion restoration contribute to reduced infarct size after postconditioning. eNOS has direct effects on myocardial blood flow following ischemia-reperfusion, with reduction in the size of the no-reflow zone. These results have important implications for ongoing clinical trials on cardioprotection, because the degree of protective benefit may be significantly influenced by the regional hemodynamic effects of eNOS-derived NO.American Heart Association (Predoctoral Fellowship)National Institutes of Health (U.S.) (R01 NS33335)National Institutes of Health (U.S.) (R01 HL57818

    Practical Considerations for Face Recognition System Implementation: Retail Business Use Case

    Get PDF
    COVID-19 pandemic has proven experts’ prediction which stated that traditional retail might not survive in the coming age. During the pandemic, many longstanding retail brands barely survived, and some of them even went out of business. To survive and thrive, implementation of digital technologies to drive a more convenient shopping experience and enhance customer experience has proven to be crucial in gaining customer loyalty. One of the use cases that is gaining popularity nowadays is the implementation of Face Recognition system. The purpose of this study is to propose the practical solutions to three underlying issues of Face Recognition implementation: the simple but effective choice of framework, the discreet but effective way to arrange camera locations, and the light but robust choice of algorithm that could deliver good accuracy with minimum resources. This study used explorative descriptive method, combining authors’ direct experience with literature study. The result of this study is: proposed implementation framework, proposed camera arrangement, and proposed use of Neural Network algorithm with image augmentation. This study hopefully could give context to academics and fellow practitioners of the steps needed to implement Face Recognition to solve real world issues

    The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy.

    Get PDF
    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    Principles and Fundamentals of Optical Imaging

    Get PDF
    In this chapter I will give a brief general introduction to optical imaging and then discuss in more detail some of the methods specifically used for imaging cortical dynamics today. Absorption and fluorescence microscopy can be used to form direct, diffraction-limited images but standard methods are often only applicable to superficial layers of cortical tissue. Two-photon microscopy takes an intermediate role since the illumination pathway is diffraction-limited but the detection pathway is not. Losses in the illumination path can be compensated using higher laser power. Since the detection pathway does not require image formation, the method can substantially increase the imaging depth. Understanding the role of scattering is important in this case since non-descanned detection can substantially enhance the imaging performance. Finally, I will discuss some of the most widely used imaging methods that all rely on diffuse scattering such as diffuse optical tomography, laser speckle imaging, and intrinsic optical imaging. These purely scattering-based methods offer a much higher imaging depth, although at a substantially reduced spatial resolution

    The influence of artificial weathering and treatment with FE–DBD plasma in atmospheric conditions on wettability of wood surfaces

    Get PDF
    The treatment of wood surfaces with plasma in atmospheric conditions is a well–known and researched processing technique. In this study, we introduce a new approach of wood surface treatment using a floating electrode dielectric barrier discharge (FE–DBD) plasma. The main principle of this kind of plasma is that wood represents an object for charge storage and the potential of the electrodes is changing according to the surround-ings in the moment of voltage supply from high voltage source. The appearance of the discharge electric fields was firstly simulated with computer software and later analysed in real conditions. Additionally, plasma was characterised by optical emission spectros-copy as elemental analysis of the discharge. The designed FE–DBD technique was ap-plied to some extent artificially weathered common beech (Fagus sylvatica L.) and Nor-way spruce (Picea abies (L.) Karst.) wood surfaces, in order to their re–activation and improvement of their wettability by commercial water-based coating. The results showed that contact angles of the droplets of applied liquids and waterborne coating decreased with weathering time, as well as after performed plasma treatment process
    corecore