5,648 research outputs found
Metastable helium molecules as tracers in superfluid liquid He
Metastable helium molecules generated in a discharge near a sharp tungsten
tip operated in either pulsed mode or continuous field-emission mode in
superfluid liquid He are imaged using a laser-induced-fluorescence
technique. By pulsing the tip, a small cloud of He molecules is
produced. At 2.0 K, the molecules in the liquid follow the motion of the normal
fluid. We can determine the normal-fluid velocity in a heat-induced counterflow
by tracing the position of a single molecule cloud. As we run the tip in
continuous field-emission mode, a normal-fluid jet from the tip is generated
and molecules are entrained in the jet. A focused 910 nm pump laser pulse is
used to drive a small group of molecules to the vibrational state.
Subsequent imaging of the tagged molecules with an expanded 925 nm probe
laser pulse allows us to measure the velocity of the normal fluid. The
techniques we developed demonstrate for the first time the ability to trace the
normal-fluid component in superfluid helium using angstrom-sized particles.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Let
Calibration of liquid argon and neon detectors with
We report results from tests of Kr, as a calibration
source in liquid argon and liquid neon. Kr atoms are
produced in the decay of Rb, and a clear Kr
scintillation peak at 41.5 keV appears in both liquids when filling our
detector through a piece of zeolite coated with Rb. Based on this
scintillation peak, we observe 6.0 photoelectrons/keV in liquid argon with a
resolution of 6% (/E) and 3.0 photoelectrons/keV in liquid neon with a
resolution of 19% (/E). The observed peak intensity subsequently decays
with the Kr half-life after stopping the fill, and we
find evidence that the spatial location of Kr atoms in
the chamber can be resolved. Kr will be a useful
calibration source for liquid argon and neon dark matter and solar neutrino
detectors.Comment: 7 pages, 12 figure
A 83Krm Source for Use in Low-background Liquid Xenon Time Projection Chambers
We report the testing of a charcoal-based Kr-83m source for use in
calibrating a low background two-phase liquid xenon detector. Kr-83m atoms
produced through the decay of Rb-83 are introduced into a xenon detector by
flowing xenon gas past the Rb-83 source. 9.4 keV and 32.1 keV transitions from
decaying 83Krm nuclei are detected through liquid xenon scintillation and
ionization. The characteristics of the Kr-83m source are analyzed and shown to
be appropriate for a low background liquid xenon detector. Introduction of
Kr-83m allows for quick, periodic calibration of low background noble liquid
detectors at low energy.Comment: Updated to version submitted to JINS
Sivers and Boer-Mulders functions in Light-Cone Quark Models
Results for the naive-time-reversal-odd quark distributions in a light-cone
quark model are presented. The final-state interaction effects are generated
via single-gluon exchange mechanism. The formalism of light-cone wave functions
is used to derive general expressions in terms of overlap of wave-function
amplitudes describing the different orbital angular momentum components of the
nucleon. In particular, the model predictions show a dominant contribution from
S- and P-wave interference in the Sivers function and a significant
contribution also from the interference of P and D waves in the Boer-Mulders
function. The favourable comparison with existing phenomenological
parametrizations motivates further applications to describe azimuthal
asymmetries in hadronic reactions.Comment: references and explanations added; version to appear in Phys. Rev.
The Stability of the Gauge Hierarchy in
It has been shown that the Dimopoulos-Wilczek (or missing-VEV) mechanism for
doublet-triplet splitting can be implemented in models,
which requires no adjoint Higgs fields. This is an advantage from the point of
view of string theory construction. Here the stability of the gauge hierarchy
is examined in detail, and it is shown that it can be guaranteed much more
simply than in . In fact a symmetry ensures the stability of the
DW form of the expectation values to all orders in GUT-scale VEVs. It is also
shown that models based on have the advantages of while permitting complete quark-lepton unification as in
.Comment: 13 pages, LaTe
Higgs signals and hard photons at the Next Linear Collider: the -fusion channel in the Standard Model
In this paper, we extend the analyses carried out in a previous article for
-fusion to the case of Higgs production via -fusion within the Standard
Model at the Next Linear Collider, in presence of electromagnetic radiation due
real photon emission. Calculations are carried out at tree-level and rates of
the leading order (LO) processes e^+e^-\rightarrow e^+e^- H \ar e^+e^- b\bar b
and e^+e^-\rightarrow e^+e^- H \ar e^+e^- WW \ar e^+e^- \mathrm{jjjj} are
compared to those of the next-to-leading order (NLO) reactions
e^+e^-\rightarrow e^+e^- H (\gamma)\ar e^+e^- b\bar b \gamma and
e^+e^-\rightarrow e^+e^- H (\gamma)\ar e^+e^- WW (\gamma) \ar e^+e^-
\mathrm{jjjj}\gamma, in the case of energetic and isolated photons.Comment: 12 pages, LaTeX, 5 PostScript figures embedded using epsfig and
bitmapped at 100dpi, complete paper including high definition figures
available at ftp://axpa.hep.phy.cam.ac.uk/stefano/cavendish_9611.ps or at
http://www.hep.phy.cam.ac.uk/theory/papers
- …
