3,583 research outputs found
Recommended from our members
Midwinter suppression of baroclinic storm activity on Mars: observations and models
Baroclinic instability and intense traveling wave activity on Mars is well known to occur in “storm zones” (Hollingsworth et al. 1996) close to the edge of the advancing or retreating polar ice cap. Such activity usually sets in during Martian fall and continues until the onset of the summer season when large-scale instability mostly ceases as the atmosphere is no longer baroclinically unstable. The stormy season is typically characterized by large-scale, zonally-propagating waves with zonal wavenumbers m = 1-3, the lower wavenumber modes typically penetrating to considerable altitude though may also be surface-intensified.
As we show below, however, some observations suggest that this eddy activity does not persist uniformly throughout the autumn, winter and spring seasons, but appears to die down quite consistently within 10 sols or so either side of the winter solstice. This midwinter ‘solsticial pause’ appears to be a sufficiently consistent feature of each winter season in both hemispheres to be regarded as a significant feature of Martian climatology, and could affect a variety of aspects of Martian meteorology including global heat and momentum transport, occurrence of dust storms etc.
A somewhat similar phenomenon has also been documented for the Earth (e.g. Nakamura 1992; Penny et al. 2010), especially in relation to seasonal variations in the north Pacific storm tracks. The cause of this phenomenon is still not well established, though suggested mechanisms include the effects of enhanced barotropic shear (the so-called ‘barotropic governor’ (James & Gray 1986) and interactions with topography over central Asia.
In this presentation we examine evidence for this phenomenon in the assimilated record of Martian climate from the Thermal Emission Spectrometer on board the Mars Global Surveyor mission (MGSTES), in conjunction with the UK version of the LMD-Oxford-OU-IAA Mars GCM (Forget et al. 1999; Montabone et al. 2006; Lewis et al. 2007). This is further corroborated in other evidence from seasonal variations in the incidence of local and regional dust storms that owe their origin to circumpolar baroclinic storms. We also discuss the extent to which this ‘solsticial pause’ phenomenon is reproduced in stand-alone atmospheric models and present results of some simulations to test a number of hypotheses for its dynamical origin on Mars
Gating-by-tilt of mechanosensitive membrane channels
We propose an alternative mechanism for the gating of biological membrane
channels in response to membrane tension that involves a change in the slope of
the membrane near the channel. Under biological membrane tensions we show that
the energy difference between the closed (tilted) and open (untilted) states
can far exceed kBT and is comparable to what is available under simple
ilational gating. Recent experiments demonstrate that membrane leaflet
asymmetries (spontaneous curvature) can strong effect the gating of some
channels. Such a phenomenon would be more easy to explain under gating-by-tilt,
given its novel intrinsic sensitivity to such asymmetry.Comment: 10 pages, 2 figure
Evaluation of positive G sub Z tolerance following simulated weightlessness (bedrest)
The magnitude of physiologic changes which are known to occur in human subjects exposed to varying levels of + G sub Z acceleration following bed rest simulation of weightlessness was studied. Bed rest effects were documented by fluid and electrolyte balance studies, maximal exercise capability, 70 deg passive tilt and lower body negative pressure tests and the ability to endure randomly prescribed acceleration profiles of +2G sub Z, +3G sub Z, and +4G sub Z. Six healthy male volunteers were studied during two weeks of bed rest after adequate control observations, followed by two weeks of recovery, followed by a second two-week period of bed rest at which time an Air Force cutaway anti-G suit was used to determine its effectiveness as a countermeasure for observed cardiovascular changes during acceleration. Results showed uniform and significant changes in all measured parameters as a consequence of bed rest including a reduced ability to tolerate +G sub Z acceleration. The use of anti-G suits significantly improved subject tolerance to all G exposures and returned measured parameters such as heart rate and blood pressure towards or to pre-bed-rest (control) values in four of the six cases
Reachability in Parametric Interval Markov Chains using Constraints
Parametric Interval Markov Chains (pIMCs) are a specification formalism that
extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into
account imprecision in the transition probability values: transitions in pIMCs
are labeled with parametric intervals of probabilities. In this work, we study
the difference between pIMCs and other Markov Chain abstractions models and
investigate the two usual semantics for IMCs: once-and-for-all and
at-every-step. In particular, we prove that both semantics agree on the
maximal/minimal reachability probabilities of a given IMC. We then investigate
solutions to several parameter synthesis problems in the context of pIMCs --
consistency, qualitative reachability and quantitative reachability -- that
rely on constraint encodings. Finally, we propose a prototype implementation of
our constraint encodings with promising results
On the existence of initial data containing isolated black holes
We present a general construction of initial data for Einstein's equations
containing an arbitrary number of black holes, each of which is instantaneously
in equilibrium. Each black hole is taken to be a marginally trapped surface and
plays the role of the inner boundary of the Cauchy surface. The black hole is
taken to be instantaneously isolated if its outgoing null rays are shear-free.
Starting from the choice of a conformal metric and the freely specifiable part
of the extrinsic curvature in the bulk, we give a prescription for choosing the
shape of the inner boundaries and the boundary conditions that must be imposed
there. We show rigorously that with these choices, the resulting non-linear
elliptic system always admits solutions.Comment: 11 pages, 2 figures, RevTeX
Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths
We discuss the design, fabrication, and testing of prototype horn-coupled,
lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic
microwave background (CMB) studies. The LEKIDs are made from a thin aluminum
film deposited on a silicon wafer and patterned using standard
photolithographic techniques at STAR Cryoelectronics, a commercial device
foundry. We fabricated twenty-element arrays, optimized for a spectral band
centered on 150 GHz, to test the sensitivity and yield of the devices as well
as the multiplexing scheme. We characterized the detectors in two
configurations. First, the detectors were tested in a dark environment with the
horn apertures covered, and second, the horn apertures were pointed towards a
beam-filling cryogenic blackbody load. These tests show that the multiplexing
scheme is robust and scalable, the yield across multiple LEKID arrays is 91%,
and the noise-equivalent temperatures (NET) for a 4 K optical load are in the
range 26\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}
A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths
We discuss the design and measured performance of a titanium nitride (TiN)
mesh absorber we are developing for controlling optical crosstalk in
horn-coupled lumped-element kinetic inductance detector arrays for
millimeter-wavelengths. This absorber was added to the fused silica
anti-reflection coating attached to previously-characterized, 20-element
prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon
substrates. To test the TiN crosstalk absorber, we compared the measured
response and noise properties of LEKID arrays with and without the TiN mesh.
For this test, the LEKIDs were illuminated with an adjustable, incoherent
electronic millimeter-wave source. Our measurements show that the optical
crosstalk in the LEKID array with the TiN absorber is reduced by 66\% on
average, so the approach is effective and a viable candidate for future
kilo-pixel arrays.Comment: 7 pages, 5 figures, accepted for publication in the Journal of Low
Temperature Physic
Set Theory and its Place in the Foundations of Mathematics:a new look at an old question
This paper reviews the claims of several main-stream candidates to be the foundations of mathematics, including set theory. The review concludes that at this level of mathematical knowledge it would be very unreasonable to settle with any one of these foundations and that the only reasonable choice is a pluralist one
Energetic Components of Cooperative Protein Folding
A new lattice protein model with a four-helix bundle ground state is analyzed
by a parameter-space Monte Carlo histogram technique to evaluate the effects of
an extensive variety of model potentials on folding thermodynamics. Cooperative
helical formation and contact energies based on a 5-letter alphabet are found
to be insufficient to satisfy calorimetric and other experimental criteria for
two-state folding. Such proteinlike behaviors are predicted, however, by models
with polypeptide-like local conformational restrictions and
environment-dependent hydrogen bonding-like interactions.Comment: 11 pages, 4 postscripts figures, Phys. Rev. Lett. (in press
- …
