4,512 research outputs found
Validation Methods Research for Fault-Tolerant Avionics and Control Systems Sub-Working Group Meeting. CARE 3 peer review
A computer aided reliability estimation procedure (CARE 3), developed to model the behavior of ultrareliable systems required by flight-critical avionics and control systems, is evaluated. The mathematical models, numerical method, and fault-tolerant architecture modeling requirements are examined, and the testing and characterization procedures are discussed. Recommendations aimed at enhancing CARE 3 are presented; in particular, the need for a better exposition of the method and the user interface is emphasized
Validation Methods Research for Fault-Tolerant Avionics and Control Systems: Working Group Meeting, 2
The validation process comprises the activities required to insure the agreement of system realization with system specification. A preliminary validation methodology for fault tolerant systems documented. A general framework for a validation methodology is presented along with a set of specific tasks intended for the validation of two specimen system, SIFT and FTMP. Two major areas of research are identified. First, are those activities required to support the ongoing development of the validation process itself, and second, are those activities required to support the design, development, and understanding of fault tolerant systems
On the role of confinement on solidification in pure materials and binary alloys
We use a phase-field model to study the effect of confinement on dendritic
growth, in a pure material solidifying in an undercooled melt, and in the
directional solidification of a dilute binary alloy. Specifically, we observe
the effect of varying the vertical domain extent () on tip selection,
by quantifying the dendrite tip velocity and curvature as a function of
, and other process parameters. As decreases, we find that the
operating state of the dendrite tips becomes significantly affected by the
presence of finite boundaries. For particular boundary conditions, we observe a
switching of the growth state from 3-D to 2-D at very small , in both
the pure material and alloy. We demonstrate that results from the alloy model
compare favorably with those from an experimental study investigating this
effect.Comment: 13 pages, 9 figures, 3 table
Bunching Transitions on Vicinal Surfaces and Quantum N-mers
We study vicinal crystal surfaces with the terrace-step-kink model on a
discrete lattice. Including both a short-ranged attractive interaction and a
long-ranged repulsive interaction arising from elastic forces, we discover a
series of phases in which steps coalesce into bunches of n steps each. The
value of n varies with temperature and the ratio of short to long range
interaction strengths. We propose that the bunch phases have been observed in
very recent experiments on Si surfaces. Within the context of a mapping of the
model to a system of bosons on a 1D lattice, the bunch phases appear as quantum
n-mers.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let
A statistical approach for the production of thermostable and alklophilic alpha-amylase from Bacillus amyloliquefaciens KCP2 under solid-state fermentation
The bacterial strain producing thermostable, alklophilic alpha-amylase was identified as Bacillus amyloliquefaciens KCP2 using 16S rDNA gene sequencing data (NCBI Accession No: KF112071). Medium components were optimized through the statistical approach for the synthesis of alpha-amylase by the organism under solid-state fermentation using wheat bran as the substrate. The medium components influencing the enzyme production were identified using a two-level fractional factorial Plackett–Burman design. Among the various variables screened, starch, ammonium sulphate and calcium chloride were found to be most significant medium components. The optimum levels of these significant parameters were determined employing the response surface Central Composite design which significantly increased the enzyme production with the supplementation of starch 0.01 g, ammonium sulphate 0.2 g and 5 mM calcium chloride in the production medium. Temperature and pH stability of the alpha-amylase suggested its wide application in the food and pharmaceutical industries
Trace Anomaly of Dilaton Coupled Scalars in Two Dimensions
Conformal scalar fields coupled to the dilaton appear naturally in
two-dimensional models of black hole evaporation. We calculate their trace
anomaly. It follows that an RST-type counterterm appears naturally in the
one-loop effective action.Comment: 11 pages, LaTeX2e; submitted to Phys. Rev. Lett., minor change
New Technology for Microfabrication and Testing of a Thermoelectric Device for Generating Mobile Electrical Power
We report the results of fabrication and testing of a thermoelectric power generation module. The module was fabricated using a new "flip-chip" module assembly technique that is scalable and modular. This technique results in a low value of contact resistivity ( < or = 10(exp 5) Ohms-sq cm). It can be used to leverage new advances in thin-film and nanostructured materials for the fabrication of new miniature thermoelectric devices. It may also enable monolithic integration of large devices or tandem arrays of devices on flexible or curved surfaces. Under mild testing, a power of 22 mW/sq cm was obtained from small (<100 K) temperature differences. At higher, more realistic temperature differences, approx.500 K, where the efficiency of these materials greatly improves, this power density would scale to between 0.5 and 1 Watt/cm2. These results highlight the excellent potential for the generation and scavenging of electrical power of practical and usable magnitude for remote applications using thermoelectric power generation technologies
- …
