209,581 research outputs found
Efficient smile detection by Extreme Learning Machine
Smile detection is a specialized task in facial expression analysis with applications such as photo selection, user experience analysis, and patient monitoring. As one of the most important and informative expressions, smile conveys the underlying emotion status such as joy, happiness, and satisfaction. In this paper, an efficient smile detection approach is proposed based on Extreme Learning Machine (ELM). The faces are first detected and a holistic flow-based face registration is applied which does not need any manual labeling or key point detection. Then ELM is used to train the classifier. The proposed smile detector is tested with different feature descriptors on publicly available databases including real-world face images. The comparisons against benchmark classifiers including Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) suggest that the proposed ELM based smile detector in general performs better and is very efficient. Compared to state-of-the-art smile detector, the proposed method achieves competitive results without preprocessing and manual registration
Non-linearity of gravelly soils under seismic compressional deformation based on KiK-net downhole array observations
A low-power opportunistic communication protocol for wearable applications
© 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment
Person re-identification by robust canonical correlation analysis
Person re-identification is the task to match people in surveillance cameras at different time and location. Due to significant view and pose change across non-overlapping cameras, directly matching data from different views is a challenging issue to solve. In this letter, we propose a robust canonical correlation analysis (ROCCA) to match people from different views in a coherent subspace. Given a small training set as in most re-identification problems, direct application of canonical correlation analysis (CCA) may lead to poor performance due to the inaccuracy in estimating the data covariance matrices. The proposed ROCCA with shrinkage estimation and smoothing technique is simple to implement and can robustly estimate the data covariance matrices with limited training samples. Experimental results on two publicly available datasets show that the proposed ROCCA outperforms regularized CCA (RCCA), and achieves state-of-the-art matching results for person re-identification as compared to the most recent methods
Palmatine inhibits TRIF-dependent NF-kB pathway against inflammation induced by LPS in goat endometrial epithelial cells
Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays
Distributed coherent manipulation of qutrits by virtual excitation processes
We propose a scheme for the deterministic coherent manipulation of two atomic
qutrits, trapped in separate cavities coupled through a short optical fibre or
optical resonator. We study such a system in the regime of dispersive
atom-field interactions, where the dynamics of atoms, cavities and fibre
operates through virtual population of both the atomic excited states and
photonic states in the cavities and fibre. We show that the resulting effective
dynamics allows for the creation of robust qutrit entanglement, and thoroughly
investigate the influence of imperfections and dissipation, due to atomic
spontaneous emission and photon leakage, on the entanglement of the two qutrits
state.Comment: 15 pages, 4 figure
- …
