1,821,294 research outputs found
Imaging and quantum efficiency measurement of chromium emitters in diamond
We present direct imaging of the emission pattern of individual
chromium-based single photon emitters in diamond and measure their quantum
efficiency. By imaging the excited state transition dipole intensity
distribution in the back focal plane of high numerical aperture objective, we
determined that the emission dipole is oriented nearly orthogonal to the
diamond-air interface. Employing ion implantation techniques, the emitters were
engineered with various proximities from the diamond-air interface. By
comparing the decay rates from the single chromium emitters at different depths
in the diamond crystal, an average quantum efficiency of 28% was measured.Comment: 11 pages and 4 figure
Strangeness magnetic form factor of the proton in the extended chiral quark model
Background: Unravelling the role played by nonvalence flavors in baryons is
crucial in deepening our comprehension of QCD. Strange quark, a component of
the higher Fock states in baryons, is an appropriate tool to investigate
nonperturbative mechanisms generated by the pure sea quark.
Purpose: Study the magnitude and the sign of the strangeness magnetic moment
and the magnetic form factor () of the proton.
Methods: Within an extended chiral constituent quark model, we investigate
contributions from all possible five-quark components to and in the four-vector momentum range (GeV/c). Probability
of the strangeness component in the proton wave function is calculated
employing the model.
Results: Predictions are obtained without any adjustable parameters.
Observables and are found to be small and negative,
consistent with the lattice-QCD findings as well as with the latest data
released by the PVA4 and HAPPEX Collaborations.
Conclusions: Due to sizeable cancelations among different configurations
contributing to the strangeness magnetic moment of the proton, it is
indispensable to (i) take into account all relevant five-quark components and
include both diagonal and non-diagonal terms, (ii) handle with care the
oscillator harmonic parameter and the component
probability.Comment: References added, typos corrected, accepted for publication by Phys.
Rev.
Inhibitory effects of an aqueous extract of Clitoria ternatea flower on alpha-glucosidase during in-vitro wheat starch digestion
Bayesian model selection for testing the no-hair theorem with black hole ringdowns
General relativity predicts that a black hole that results from the merger of
two compact stars (either black holes or neutron stars) is initially highly
deformed but soon settles down to a quiescent state by emitting a superposition
of quasi-normal modes (QNMs). The QNMs are damped sinusoids with characteristic
frequencies and decay times that depend only on the mass and spin of the black
hole and no other parameter - a statement of the no-hair theorem. In this paper
we have examined the extent to which QNMs could be used to test the no-hair
theorem with future ground- and space-based gravitational-wave detectors. We
model departures from general relativity (GR) by introducing extra parameters
which change the mode frequencies or decay times from their general
relativistic values. With the aid of numerical simulations and Bayesian model
selection, we assess the extent to which the presence of such a parameter could
be inferred, and its value estimated. We find that it is harder to decipher the
departure of decay times from their GR value than it is with the mode
frequencies. Einstein Telescope (ET, a third generation ground-based detector)
could detect departures of <1% in the frequency of the dominant QNM mode of a
500 Msun black hole, out to a maximum range of 4 Gpc. In contrast, the New
Gravitational Observatory (NGO, an ESA space mission to detect gravitational
waves) can detect departures of ~ 0.1% in a 10^8 Msun black hole to a
luminosity distance of 30 Gpc (z = 3.5).Comment: 9 pages, 5 figure
Schwarzschild-like black holes: Light-like trajectories and massless scalar absorption
Black holes are among the most intriguing objects in nature. They are
believed to be fully described by General Relativity (GR), and the
astrophysical black holes are expected to belong to the Kerr family, obeying
the no-hair theorems. Alternative theories of gravity or parameterized
deviations of GR allow black hole solutions, which have additional parameters
other than mass and angular momentum. We analyze a Schwarzschild-like metric,
proposed by Johannsen and Psaltis, characterized by its mass and a deformation
parameter. We compute the absorption cross section of massless scalar waves for
different values of this deformation parameter and compare it with the
corresponding scalar absorption cross section of the Schwarzschild black hole.
We also present analytical approximations for the absorption cross section in
the high-frequency regime. We check the consistence of our results comparing
the numerical and analytical approaches, finding excellent agreement.Comment: 8 pages, 14 figure
- …
