5,967 research outputs found
X-Ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu
We have used a MHz lock-in x-ray spectro-microscopy technique to directly
detect changes of magnetic moments in Cu due to spin injection from an adjacent
Co layer. The elemental and chemical specificity of x-rays allows us to
distinguish two spin current induced effects. We detect the creation of
transient magnetic moments of on Cu atoms
within the bulk of the 28 nm thick Cu film due to spin-accumulation. The moment
value is compared to predictions by Mott's two current model. We also observe
that the hybridization induced existing magnetic moments on Cu interface atoms
are transiently increased by about 10% or .
This reveals the dominance of spin-torque alignment over Joule heat induced
disorder of the interfacial Cu moments during current flow
Direct Observation of Large Amplitude Spin Excitations Localized in a Spin-Transfer Nanocontact
We report the direct observation of large amplitude spin-excitations
localized in a spin-transfer nanocontact using scanning transmission x-ray
microscopy. Experiments were conducted using a nanocontact to an ultrathin
ferromagnetic multilayer with perpendicular magnetic anisotropy. Element
resolved x-ray magnetic circular dichroism images show an abrupt onset of spin
excitations at a threshold current that are localized beneath the nanocontact,
with average spin precession cone angles of 25{\deg} at the contact center. The
results strongly suggest that we have observed a localized magnetic soliton.Comment: 5 pages, 3 figure
Understanding and optimising the packing density of perylene bisimide layers on CVD-grown graphene
The non-covalent functionalisation of graphene is an attractive strategy to
alter the surface chemistry of graphene without damaging its superior
electrical and mechanical properties. Using the facile method of aqueous-phase
functionalisation on large-scale CVD-grown graphene, we investigated the
formation of different packing densities in self-assembled monolayers (SAMs) of
perylene bisimide derivatives and related this to the amount of substrate
contamination. We were able to directly observe wet-chemically deposited SAMs
in scanning tunnelling microscopy (STM) on transferred CVD graphene and
revealed that the densely packed perylene ad-layers adsorb with the conjugated
{\pi}-system of the core perpendicular to the graphene substrate. This
elucidation of the non-covalent functionalisation of graphene has major
implications on controlling its surface chemistry and opens new pathways for
adaptable functionalisation in ambient conditions and on the large scale.Comment: 27 pages (including SI), 10 figure
The JPL telerobotic Manipulator Control and Mechanization (MCM) subsystem
The Manipulator Control and Mechanization (MCM) subsystem of the telerobot system provides the real-time control of the robot manipulators in autonomous and teleoperated modes and real time input/output for a variety of sensors and actuators. Substantial hardware and software are included in this subsystem which interfaces in the hierarchy of the telerobot system with the other subsystems. The other subsystems are: run time control, task planning and reasoning, sensing and perception, and operator control subsystem. The architecture of the MCM subsystem, its capabilities, and details of various hardware and software elements are described. Important improvements in the MCM subsystem over the first version are: dual arm coordinated trajectory generation and control, addition of integrated teleoperation, shared control capability, replacement of the ultimate controllers with motor controllers, and substantial increase in real time processing capability
Monte Carlo study of fermionic trions in a square lattice with harmonic confinement
We investigate the strong-coupling limit of a three-component Fermi mixture
in an optical lattice with attractive interactions. In this limit bound states
(trions) of the three components are formed. We derive an effective Hamiltonian
for these composite fermions and show that it is asymptotically equivalent to
an antiferromagnetic Ising model. By using Monte-Carlo simulations, we
investigate the spatial arrangement of the trions and the formation of a
trionic density wave (CDW), both in a homogeneous lattice and in the presence
of an additional harmonic confinement. Depending on the strength of the
confinement and on the temperature, we found several scenarios for the trionic
distribution, including coexistence of disordered trions with CDW and band
insulator phases. Our results show that, due to a proximity effect, staggered
density modulations are induced in regions of the trap where they would not
otherwise be present according to the local density approximation.Comment: 10 pages, 8 figure
Domain-wall depinning assisted by pure spin currents
We study the depinning of domain walls by pure diffusive spin currents in a
nonlocal spin valve structure based on two ferromagnetic permalloy elements
with copper as the nonmagnetic spin conduit. The injected spin current is
absorbed by the second permalloy structure with a domain wall and from the
dependence of the wall depinning field on the spin current density we find an
efficiency of 6*10^{-14}T/(A/m^2), which is more than an order of magnitude
larger than for conventional current induced domain wall motion. Theoretically
we reproduce this high efficiency, which arises from the surface torques
exerted by the absorbed spin current that lead to efficient depinning.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let
Apprentice pay in Britain, Germany and Switzerland: Institutions, market forces and market power
This is the accepted version of the original publication in the European Journal of Industrial Relations, which is available online at http://ejd.sagepub.com/content/19/3/201.The pay of metalworking apprentices is high in Britain, middling in Germany and low in Switzerland. We analyse these differences using fieldwork evidence and survey data, drawing on both economic and institutionalist theories. Several institutional attributes influence apprentice pay, partly by affecting supply and demand in markets for training places. Institutional support for apprenticeship training appears to involve important complementarities in both Germany and Switzerland, in contrast to Britain’s less coherent and more market-driven approach.We thank the Hans-Böckler-Stiftung, Anglo-German Foundation, SKOPE (Oxford), the Swiss federal government (OPET/SERI) and WZB (Berlin) for financial support
- …
