10,068 research outputs found

    Noise-amplitude dependence of the invariant density for noisy, fully chaotic one-dimensional maps

    Full text link
    We present some analytic, non-perturbative results for the invariant density rho(x) for noisy one-dimensional maps at fully developed chaos. Under periodic boundary conditions, the Fourier expansion method is used to show precisely how noise makes rho(x) absolutely continuous and smoothens it out. Simple solvable models are used to illustrate the explicit dependence of rho(x) on the amplitude eta of the noise distribution, all the way from the case of zero noise (eta > 0) to the completely noise-dominated limit (eta=1).Comment: 15 pages, 5 Postscript figures (To appear in Phys. Rev. E

    Application of a Reynolds stress turbulence model to the compressible shear layer

    Get PDF
    Theoretically based turbulence models have had success in predicting many features of incompressible, free shear layers. However, attempts to extend these models to the high-speed, compressible shear layer have been less effective. In the present work, the compressible shear layer was studied with a second-order turbulence closure, which initially used only variable density extensions of incompressible models for the Reynolds stress transport equation and the dissipation rate transport equation. The quasi-incompressible closure was unsuccessful; the predicted effect of the convective Mach number on the shear layer growth rate was significantly smaller than that observed in experiments. Having thus confirmed that compressibility effects have to be explicitly considered, a new model for the compressible dissipation was introduced into the closure. This model is based on a low Mach number, asymptotic analysis of the Navier-Stokes equations, and on direct numerical simulation of compressible, isotropic turbulence. The use of the new model for the compressible dissipation led to good agreement of the computed growth rates with the experimental data. Both the computations and the experiments indicate a dramatic reduction in the growth rate when the convective Mach number is increased. Experimental data on the normalized maximum turbulence intensities and shear stress also show a reduction with increasing Mach number

    Estimation of squeezing properties of multiphoton coherent states from optical tomograms

    Full text link
    We have examined both single and entangled two-mode multiphoton coherent states and shown how the `Janus-faced' properties between two partner states are mirrored in appropriate tomograms. Entropic squeezing, quadrature squeezing and higher-order squeezing properties for a wide range of nonclassical states are estimated directly from tomograms. We have demonstrated how squeezing properties of two-mode entangled states produced at the output port of a quantum beamsplitter are sensitive to the relative phase between the reflected and transmitted fields. This feature allows for the possibility of tuning the relative phase to enhance squeezing properties of the state. Finally we have examined the manner in which decoherence affects squeezing and the changes in the optical tomogram of the state due to interaction with the environment.Comment: 18 pages, 33 figure
    • …
    corecore