633 research outputs found
Solutions of the bound state Faddeev-Yakubovsky equations in three dimensions by using NN and 3N potential models
A recently developed three-dimensional approach (without partial-wave
decomposition) is considered to investigate solutions of Faddeev-Yakubovsky
integral equations in momentum space for three- and four-body bound states,
with the inclusion of three-body forces. In the calculations of the binding
energies, spin-dependent nucleon-nucleon (NN) potential models (named, S,
MT-I/III, YS-type and PGL) are considered along with the scalar
two-meson exchange three-body potential. Good agreement of the presently
reported results with the ones obtained by other techniques are obtained,
demonstrating the advantage of an approach in which the formalism is much more
simplified and easy to manage for direct computation.Comment: 16 pages, 1 figure and 6 tables; to appear in Physical review
Heartbeat stars and the ringing of tidal pulsations
With the advent of high precision photometry from satellites such as Kepler and CoRoT, a whole new layer of interesting and astounding astronomical objects has been revealed: heartbeat stars are an example of such objects. Heartbeat stars are eccen- tric ellipsoidal variables that undergo strong tidal interactions when the stars are almost in contact at the time of closest approach. These interactions deform of the stars and cause a notable light curve variation in the form of a tidal pulse. A subset of these objects (∼20%) show prominent tidally induced pulsations: pulsations forced by the binary orbit. We now have a fully functional code that models binary star features (using phoebe) and stellar pulsations simultaneously, enabling a complete and accurate heartbeat star model to be determined. In this paper we show the results of our new code, which uses emcee, a variant of mcmc, to generate a full set of stellar parameters. We further highlight the interesting features of KIC 8164262, including its tidally induced pulsations and resonantly locked pulsations
Investigating magnetic activity of F stars with the it Kepler mission
The dynamo process is believed to drive the magnetic activity of stars like
the Sun that have an outer convection zone. Large spectroscopic surveys showed
that there is a relation between the rotation periods and the cycle periods:
the longer the rotation period is, the longer the magnetic activity cycle
period will be. We present the analysis of F stars observed by Kepler for which
individual p modes have been measure and with surface rotation periods shorter
than 12 days. We defined magnetic indicators and proxies based on photometric
observations to help characterise the activity levels of the stars. With the
Kepler data, we investigate the existence of stars with cycles (regular or
not), stars with a modulation that could be related to magnetic activity, and
stars that seem to show a flat behaviour.Comment: 2 pages, 1 figure, proceedings of IAU Symposium 302 'Magnetic fields
through stellar evolution', 25-30 August 2013, Biarritz, Franc
Seismic evidence for a weak radial differential rotation in intermediate-mass core helium burning stars
The detection of mixed modes that are split by rotation in Kepler red giants
has made it possible to probe the internal rotation profiles of these stars,
which brings new constraints on the transport of angular momentum in stars.
Mosser et al. (2012) have measured the rotation rates in the central regions of
intermediate-mass core helium burning stars (secondary clump stars). Our aim
was to exploit& the rotational splittings of mixed modes to estimate the amount
of radial differential rotation in the interior of secondary clump stars using
Kepler data, in order to place constraints on angular momentum transport in
intermediate-mass stars. We selected a subsample of Kepler secondary clump
stars with mixed modes that are clearly rotationally split. By applying a
thorough statistical analysis, we showed that the splittings of both
gravity-dominated modes (trapped in central regions) and p-dominated modes
(trapped in the envelope) can be measured. We then used these splittings to
estimate the amount of differential rotation by using inversion techniques and
by applying a simplified approach based on asymptotic theory (Goupil et al.
2013). We obtained evidence for a weak radial differential rotation for six of
the seven targets that were selected, with the central regions rotating
to times faster than the envelope. The last target was
found to be consistent with a solid-body rotation. This demonstrates that an
efficient redistribution of angular momentum occurs after the end of the main
sequence in the interior of intermediate-mass stars, either during the
short-lived subgiant phase, or once He-burning has started in the core. In
either case, this should bring constraints on the angular momentum transport
mechanisms that are at work.Comment: 16 pages, 8 figures, accepted in A&
- …
