670 research outputs found

    An Analytical Approach to Neuronal Connectivity

    Full text link
    This paper describes how realistic neuromorphic networks can have their connectivity properties fully characterized in analytical fashion. By assuming that all neurons have the same shape and are regularly distributed along the two-dimensional orthogonal lattice with parameter Δ\Delta, it is possible to obtain the accurate number of connections and cycles of any length from the autoconvolution function as well as from the respective spectral density derived from the adjacency matrix. It is shown that neuronal shape plays an important role in defining the spatial spread of network connections. In addition, most such networks are characterized by the interesting phenomenon where the connections are progressively shifted along the spatial domain where the network is embedded. It is also shown that the number of cycles follows a power law with their respective length. Morphological measurements for characterization of the spatial distribution of connections, including the adjacency matrix spectral density and the lacunarity of the connections, are suggested. The potential of the proposed approach is illustrated with respect to digital images of real neuronal cells.Comment: 4 pages, 6 figure

    On Universality in Human Correspondence Activity

    Get PDF
    Identifying and modeling patterns of human activity has important ramifications in applications ranging from predicting disease spread to optimizing resource allocation. Because of its relevance and availability, written correspondence provides a powerful proxy for studying human activity. One school of thought is that human correspondence is driven by responses to received correspondence, a view that requires distinct response mechanism to explain e-mail and letter correspondence observations. Here, we demonstrate that, like e-mail correspondence, the letter correspondence patterns of 16 writers, performers, politicians, and scientists are well-described by the circadian cycle, task repetition and changing communication needs. We confirm the universality of these mechanisms by properly rescaling letter and e-mail correspondence statistics to reveal their underlying similarity.Comment: 17 pages, 3 figures, 1 tabl

    Sandpile model on an optimized scale-free network on Euclidean space

    Full text link
    Deterministic sandpile models are studied on a cost optimized Barab\'asi-Albert (BA) scale-free network whose nodes are the sites of a square lattice. For the optimized BA network, the sandpile model has the same critical behaviour as the BTW sandpile, whereas for the un-optimized BA network the critical behaviour is mean-field like.Comment: Five pages, four figure

    Making it real: exploring the potential of Augmented Reality for teaching primary school science

    Get PDF
    The use of Augmented Reality (AR) in formal education could prove a key component in future learning environments that are richly populated with a blend of hardware and software applications. However, relatively little is known about the potential of this technology to support teaching and learning with groups of young children in the classroom. Analysis of teacher-child dialogue in a comparative study between use of an AR virtual mirror interface and more traditional science teaching methods for 10-year-old children, revealed that the children using AR were less engaged than those using traditional resources. We suggest four design requirements that need to be considered if AR is to be successfully adopted into classroom practice. These requirements are: flexible content that teachers can adapt to the needs of their children, guided exploration so learning opportunities can be maximised, in a limited time, and attention to the needs of institutional and curricular requirements

    Dispensability of Escherichia coli's latent pathways

    Full text link
    Gene-knockout experiments on single-cell organisms have established that expression of a substantial fraction of genes is not needed for optimal growth. This problem acquired a new dimension with the recent discovery that environmental and genetic perturbations of the bacterium Escherichia coli are followed by the temporary activation of a large number of latent metabolic pathways, which suggests the hypothesis that temporarily activated reactions impact growth and hence facilitate adaptation in the presence of perturbations. Here we test this hypothesis computationally and find, surprisingly, that the availability of latent pathways consistently offers no growth advantage, and tends in fact to inhibit growth after genetic perturbations. This is shown to be true even for latent pathways with a known function in alternate conditions, thus extending the significance of this adverse effect beyond apparently nonessential genes. These findings raise the possibility that latent pathway activation is in fact derivative of another, potentially suboptimal, adaptive response

    Inheritance patterns in citation networks reveal scientific memes

    Full text link
    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and we validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical Review

    Systemic importance of financial institutions: regulations, research, open issues, proposals

    Get PDF
    In the field of risk management, scholars began to bring together the quantitative methodologies with the banking management issues about 30 years ago, with a special focus on market, credit and operational risks. After the systemic effects of banks defaults during the recent financial crisis, and despite a huge amount of literature in the last years concerning the systemic risk, no standard methodologies have been set up to now. Even the new Basel 3 regulation has adopted a heuristic indicator-based approach, quite far from an effective quantitative tool. In this paper, we refer to the different pieces of the puzzle: definition of systemic risk, a set of coherent and useful measures, the computability of these measures, the data set structure. In this challenging field, we aim to build a comprehensive picture of the state of the art, to illustrate the open issues, and to outline some paths for a more successful future research. This work appropriately integrates other useful surveys and it is directed to both academic researchers and practitioners

    Symbolic meanings and e-learning in the workplace: The case of an intranet-based training tool

    Get PDF
    This article contributes to the debate on work-based e-learning, by unpacking the notion of ‘the learning context’ in a case where the mediating tool for training also supports everyday work. Users’ engagement with the information and communication technology tool is shown to reflect dynamic interactions among the individual, peer group, organizational and institutional levels. Also influential are professionals’ values and identity work, alongside their interpretations of espoused and emerging symbolic meanings. Discussion draws on pedagogically informed studies of e-learning and the wider organizational learning literature. More centrally, this article highlights the instrumentality of symbolic interactionism for e-learning research and explores some of the framework’s conceptual resources as applied to organizational analysis and e-learning design. </jats:p

    Technology-Supported Storytelling (TSST) Strategy in Virtual World for Multicultural Education

    Get PDF
    Learning culture through stories is an effective way for multicultural education, since stories are one of the most powerful and personal ways that we learn about the world. Storytelling, the process of telling stories, is a form of communication and a universal expression of culture. With the development of technology, storytelling emerges out of diverse ways. This study explores the storytelling in virtual worlds for multicultural education, and devises a Technology-Supported storytelling (TSST) strategy by examining and considering the characteristics of virtual worlds which could be incorporated into the storytelling, and then uses this strategy to teach Korean culture to students with different culture background. With this innovative TSST strategy in virtual world, this study expects to provide a guide to practice for teaching multicultural in digital era
    corecore