670 research outputs found
An Analytical Approach to Neuronal Connectivity
This paper describes how realistic neuromorphic networks can have their
connectivity properties fully characterized in analytical fashion. By assuming
that all neurons have the same shape and are regularly distributed along the
two-dimensional orthogonal lattice with parameter , it is possible to
obtain the accurate number of connections and cycles of any length from the
autoconvolution function as well as from the respective spectral density
derived from the adjacency matrix. It is shown that neuronal shape plays an
important role in defining the spatial spread of network connections. In
addition, most such networks are characterized by the interesting phenomenon
where the connections are progressively shifted along the spatial domain where
the network is embedded. It is also shown that the number of cycles follows a
power law with their respective length. Morphological measurements for
characterization of the spatial distribution of connections, including the
adjacency matrix spectral density and the lacunarity of the connections, are
suggested. The potential of the proposed approach is illustrated with respect
to digital images of real neuronal cells.Comment: 4 pages, 6 figure
On Universality in Human Correspondence Activity
Identifying and modeling patterns of human activity has important
ramifications in applications ranging from predicting disease spread to
optimizing resource allocation. Because of its relevance and availability,
written correspondence provides a powerful proxy for studying human activity.
One school of thought is that human correspondence is driven by responses to
received correspondence, a view that requires distinct response mechanism to
explain e-mail and letter correspondence observations. Here, we demonstrate
that, like e-mail correspondence, the letter correspondence patterns of 16
writers, performers, politicians, and scientists are well-described by the
circadian cycle, task repetition and changing communication needs. We confirm
the universality of these mechanisms by properly rescaling letter and e-mail
correspondence statistics to reveal their underlying similarity.Comment: 17 pages, 3 figures, 1 tabl
Sandpile model on an optimized scale-free network on Euclidean space
Deterministic sandpile models are studied on a cost optimized
Barab\'asi-Albert (BA) scale-free network whose nodes are the sites of a square
lattice. For the optimized BA network, the sandpile model has the same critical
behaviour as the BTW sandpile, whereas for the un-optimized BA network the
critical behaviour is mean-field like.Comment: Five pages, four figure
Making it real: exploring the potential of Augmented Reality for teaching primary school science
The use of Augmented Reality (AR) in formal education could prove a key component in future learning environments that are richly populated with a blend of hardware and software applications. However, relatively little is known about the potential of this technology to support teaching and learning with groups of young children in the classroom. Analysis of teacher-child dialogue in a comparative study between use of an AR virtual mirror interface and more traditional science teaching methods for 10-year-old children, revealed that the children using AR were less engaged than those using traditional resources. We suggest four design requirements that need to be considered if AR is to be successfully adopted into classroom practice. These requirements are: flexible content that teachers can adapt to the needs of their children, guided exploration so learning opportunities can be maximised, in a limited time, and attention to the needs of institutional and curricular requirements
Dispensability of Escherichia coli's latent pathways
Gene-knockout experiments on single-cell organisms have established that
expression of a substantial fraction of genes is not needed for optimal growth.
This problem acquired a new dimension with the recent discovery that
environmental and genetic perturbations of the bacterium Escherichia coli are
followed by the temporary activation of a large number of latent metabolic
pathways, which suggests the hypothesis that temporarily activated reactions
impact growth and hence facilitate adaptation in the presence of perturbations.
Here we test this hypothesis computationally and find, surprisingly, that the
availability of latent pathways consistently offers no growth advantage, and
tends in fact to inhibit growth after genetic perturbations. This is shown to
be true even for latent pathways with a known function in alternate conditions,
thus extending the significance of this adverse effect beyond apparently
nonessential genes. These findings raise the possibility that latent pathway
activation is in fact derivative of another, potentially suboptimal, adaptive
response
Recommended from our members
A case study analysis of a constructionist knowledge building community with activity theory
This article investigates how activity theory can help research a constructionist community. We present a constructionist activity model called CONstructionism Through ACtivity Theory (CONTACT) model and explain how it can be used to analyse the constructionist activity in knowledge building communities. We then illustrate the model through its application to analysing the Wiki-supported community associated with a computer game. Our analysis focuses mainly on two perspectives: individual and collective actions, as well as individual and collective mediations. Experiences and challenges from the analysis are reported to demonstrate how CONTACT is helpful in analysing such communities
Inheritance patterns in citation networks reveal scientific memes
Memes are the cultural equivalent of genes that spread across human culture
by means of imitation. What makes a meme and what distinguishes it from other
forms of information, however, is still poorly understood. Our analysis of
memes in the scientific literature reveals that they are governed by a
surprisingly simple relationship between frequency of occurrence and the degree
to which they propagate along the citation graph. We propose a simple
formalization of this pattern and we validate it with data from close to 50
million publication records from the Web of Science, PubMed Central, and the
American Physical Society. Evaluations relying on human annotators, citation
network randomizations, and comparisons with several alternative approaches
confirm that our formula is accurate and effective, without a dependence on
linguistic or ontological knowledge and without the application of arbitrary
thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical
Review
Systemic importance of financial institutions: regulations, research, open issues, proposals
In the field of risk management, scholars began to bring together the quantitative methodologies with the banking management issues about 30 years ago, with a special focus on market, credit and operational risks. After the systemic effects of banks defaults during the recent financial crisis,
and despite a huge amount of literature in the last years concerning the systemic risk, no standard methodologies have been set up to now. Even the new Basel 3 regulation has adopted a heuristic indicator-based approach, quite far from an effective quantitative tool. In this paper, we refer to the different pieces of the puzzle: definition of systemic risk, a set of coherent and useful measures, the computability of these measures, the data set structure. In this challenging field, we aim to build a comprehensive picture of the state of the art, to illustrate the open issues, and to outline some paths for a more successful future research. This work appropriately integrates other useful surveys and it is directed to both academic researchers and practitioners
Symbolic meanings and e-learning in the workplace: The case of an intranet-based training tool
This article contributes to the debate on work-based e-learning, by unpacking the notion of ‘the learning context’ in a case where the mediating tool for training also supports everyday work. Users’ engagement with the information and communication technology tool is shown to reflect dynamic interactions among the individual, peer group, organizational and institutional levels. Also influential are professionals’ values and identity work, alongside their interpretations of espoused and emerging symbolic meanings. Discussion draws on pedagogically informed studies of e-learning and the wider organizational learning literature. More centrally, this article highlights the instrumentality of symbolic interactionism for e-learning research and explores some of the framework’s conceptual resources as applied to organizational analysis and e-learning design. </jats:p
Technology-Supported Storytelling (TSST) Strategy in Virtual World for Multicultural Education
Learning culture through stories is an effective way for multicultural education, since stories are one of the most powerful and personal ways that we learn about the world. Storytelling, the process of telling stories, is a form of communication and a universal expression of culture. With the development of technology, storytelling emerges out of diverse ways. This study explores the storytelling in virtual worlds for multicultural education, and devises a Technology-Supported storytelling (TSST) strategy by examining and considering the characteristics of virtual worlds which could be incorporated into the storytelling, and then uses this strategy to teach Korean culture to students with different culture background. With this innovative TSST strategy in virtual world, this study expects to provide a guide to practice for teaching multicultural in digital era
- …
