2,733 research outputs found

    On the Phenomenology of Hydrodynamic Shear Turbulence

    Full text link
    The question of a purely hydrodynamic origin of turbulence in accretion disks is reexamined, on the basis of a large body of experimental and numerical evidence on various subcritical (i.e., linearly stable) hydrodynamic flows. One of the main points of this paper is that the length scale and velocity fluctuation amplitude which are characteristic of turbulent transport in these flows scale like Rem1/2Re_m^{-1/2}, where RemRe_m is the minimal Reynolds number for the onset of fully developed turbulence. From this scaling, a simple explanation of the dependence of RemRe_m with relative gap width in subcritical Couette-Taylor flows is developed. It is also argued that flows in the shearing sheet limit should be turbulent, and that the lack of turbulence in all such simulations performed to date is most likely due to a lack of resolution, as a consequence of the effect of the Coriolis force on the large scale fluctuations of turbulent flows. These results imply that accretion flows should be turbulent through hydrodynamic processes. If this is the case, the Shakura-Sunyaev α\alpha parameter is constrained to lie in the range 10310110^{-3}-10^{-1} in accretion disks, depending on unknown features of the mechanism which sustains turbulence. Whether the hydrodynamic source of turbulence is more efficient than the MHD one where present is an open question.Comment: 31 pages, 3 figures. Accepted for publication in Ap

    Rotated stripe order and its competition with superconductivity in La1.88_{1.88}Sr0.12_{0.12}CuO4_4

    Get PDF
    We report the observation of a bulk charge modulation in La1.88_{1.88}Sr0.12_{0.12}CuO4_4 (LSCO) with a characteristic in-plane wave-vector of (0.236, ±δ\pm \delta), with δ\delta=0.011 r.l.u. The transverse shift of the ordering wave-vector indicates the presence of rotated charge-stripe ordering, demonstrating that the charge ordering is not pinned to the Cu-O bond direction. On cooling through the superconducting transition, we find an abrupt change in the growth of the charge correlations and a suppression of the charge order parameter indicating competition between the two orderings. Orthorhombic LSCO thus helps bridge the apparent disparities between the behavior previously observed in the tetragonal "214" cuprates and the orthorhombic yttrium and bismuth-based cuprates and thus lends strong support to the idea that there is a common motif to charge order in all cuprate families.Comment: 6 pages, 4 figue

    Bird mortality related to collisions with ski–lift cables: do we estimate just the tip of the iceberg?

    Get PDF
    Collisions with ski–lift cables are an important cause of death for grouse species living close to alpine ski resorts. As several biases may reduce the detection probability of bird carcasses, the mortality rates related to these collisions are generally underestimated. The possibility that injured birds may continue flying for some distance after striking cables represents a major source of error, known as crippling bias. Estimating the crippling losses resulting from birds dying far from the ski–lift corridors is difficult and it is usually assessed by systematic searches of carcasses on both sides of the ski–lifts. Using molecular tracking, we were able to demonstrate that a rock ptarmigan hen flew up to 600 m after striking a ski–lift cable, a distance preventing its detection by traditional carcasses surveys. Given the difficulty in conducting systematic searches over large areas surrounding the ski–lifts, only an experiment using radio–tagged birds would allow us to estimate the real mortality rate associated with cable collision

    Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    Get PDF
    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources

    Quantum and thermal ionic motion, oxygen isotope effect, and superexchange distribution in La<sub>2</sub>CuO<sub>4</sub>

    Get PDF
    We study the zero-point and thermal ionic motion in La2_2CuO4_4 by means of high-resolution neutron diffraction experiments. Our results demonstrate anisotropic motion of O and to a lesser extent of Cu ions, both consistent with the structure of coupled CuO6_6 octahedra, and quantify the relative effects of zero-point and thermal contributions to ionic motion. By substitution of 18^{18}O, we find that the oxygen isotope effect on the lattice dimensions is small and negative (0.01%-0.01\%), while the isotope effect on the ionic displacement parameters is significant (6-6 to 50%50\%). We use our results as input for theoretical estimates of the distribution of magnetic interaction parameters, JJ, in an effective one-band model for the cuprate plane. We find that ionic motion causes only small (1%1\%) effects on the average value J\langle J\rangle, which vary with temperature and O isotope, but results in dramatic (1010-20%20\%) fluctuations in JJ values that are subject to significant (88-12%12\%) isotope effects. We demonstrate that this motional broadening of JJ can have substantial effects on certain electronic and magnetic properties in cuprates.Comment: 13 pages, 9 figure
    corecore