1,836 research outputs found

    Integrable Boundaries, Conformal Boundary Conditions and A-D-E Fusion Rules

    Get PDF
    The sl(2)sl(2) minimal theories are labelled by a Lie algebra pair (A,G)(A,G) where GG is of AA-DD-EE type. For these theories on a cylinder we conjecture a complete set of conformal boundary conditions labelled by the nodes of the tensor product graph AGA\otimes G. The cylinder partition functions are given by fusion rules arising from the graph fusion algebra of AGA\otimes G. We further conjecture that, for each conformal boundary condition, an integrable boundary condition exists as a solution of the boundary Yang-Baxter equation for the associated lattice model. The theory is illustrated using the (A4,D4)(A_4,D_4) or 3-state Potts model.Comment: 4 pages, REVTe

    Pion transition form factor at the two-loop level vis-\`a-vis experimental data

    Full text link
    We use light-cone QCD sum rules to calculate the pion-photon transition form factor, taking into account radiative corrections up to the next-to-next-to-leading order of perturbation theory. We compare the obtained predictions with all available experimental data from the CELLO, CLEO, and the BaBar Collaborations. We point out that the BaBar data are incompatible with the convolution scheme of QCD, on which our predictions are based, and can possibly be explained only with a violation of the factorization theorem. We pull together recent theoretical results and comment on their significance.Comment: 10 pages, 4 figures, 3 tables. Presented by the first author at Workshop "Recent Advances in Perturbative QCD and Hadronic Physics", 20--25 July 2009, ECT*, Trento (Italy), in Honor of Prof. Anatoly Efremov's 75th Birthday. v2 wrong reference tag removed. v3 Fig. 4 and Ref. [27] correcte

    Donaldson-Thomas invariants and wall-crossing formulas

    Full text link
    Notes from the report at the Fields institute in Toronto. We introduce the Donaldson-Thomas invariants and describe the wall-crossing formulas for numerical Donaldson-Thomas invariants.Comment: 18 pages. To appear in the Fields Institute Monograph Serie

    Gauges and Cosmological Backreaction

    Full text link
    We present a formalism for spatial averaging in cosmology applicable to general spacetimes and coordinates, and allowing the easy incorporation of a wide variety of matter sources. We apply this formalism to a Friedmann-LeMaitre-Robertson-Walker universe perturbed to second-order and present the corrections to the background in an unfixed gauge. We then present the corrections that arise in uniform curvature and conformal Newtonian gauges.Comment: 13 pages. Updated: reference added, typos corrected, exposition clarified. Version 3: Replaced with version published by JCA

    Photon-meson transition form factors of light pseudoscalar mesons

    Full text link
    The photon-meson transition form factors of light pseudoscalar mesons π0\pi ^{0}, η\eta, and η\eta ^{\prime} are systematically calculated in a light-cone framework, which is applicable as a light-cone quark model at low Q2Q^{2} and is also physically in accordance with the light-cone pQCD approach at large Q2Q^{2}. The calculated results agree with the available experimental data at high energy scale. We also predict the low Q2Q^{2} behaviors of the photon-meson transition form factors of π0\pi ^{0}, η\eta and η\eta ^{\prime }, which are measurable in e+A(Nucleus)e+A+Me+A({Nucleus})\to e+A+M process via Primakoff effect at JLab and DESY.Comment: 22 Latex pages, 7 figures, Version to appear in PR

    Extended modular operad

    Full text link
    This paper is a sequel to [LoMa] where moduli spaces of painted stable curves were introduced and studied. We define the extended modular operad of genus zero, algebras over this operad, and study the formal differential geometric structures related to these algebras: pencils of flat connections and Frobenius manifolds without metric. We focus here on the combinatorial aspects of the picture. Algebraic geometric aspects are treated in [Ma2].Comment: 38 pp., amstex file, no figures. This version contains additional references and minor change

    The Composition of the Master Schedule

    Get PDF
    Over a period of about four months, the IVS Coordinating Center (IVSCC) each year composes the Master Schedule for the IVS observing program of the next calendar year. The process begins in early July when the IVSCC contacts the IVS Network Stations to request information about available station time as well as holiday and maintenance schedules for the upcoming year. Going through various planning stages and a review process with the IVS Observing Program Committee (OPC), the final version of the Master Schedule is posted by early November. We describe the general steps of the composition and illustrate them with the example of the planning for the Master Schedule of the 2010 observing year

    On Perturbations of Unitary Minimal Models by Boundary Condition Changing Operators

    Get PDF
    In this note we consider boundary perturbations in the A-Series unitary minimal models by phi_{r,r+2} fields on superpositions of boundaries. In particular, we consider perturbations by boundary condition changing operators. Within conformal perturbation theory we explicitly map out the space of perturbative renormalisation group flows for the example phi_{1,3} and find that this sheds light on more general phi_{r,r+2} perturbations. Finally, we find a simple diagrammatic representation for the space of flows from a single Cardy boundary condition.Comment: 27 pages, 10 figure

    Curve counting via stable pairs in the derived category

    Full text link
    For a nonsingular projective 3-fold XX, we define integer invariants virtually enumerating pairs (C,D)(C,D) where CXC\subset X is an embedded curve and DCD\subset C is a divisor. A virtual class is constructed on the associated moduli space by viewing a pair as an object in the derived category of XX. The resulting invariants are conjecturally equivalent, after universal transformations, to both the Gromov-Witten and DT theories of XX. For Calabi-Yau 3-folds, the latter equivalence should be viewed as a wall-crossing formula in the derived category. Several calculations of the new invariants are carried out. In the Fano case, the local contributions of nonsingular embedded curves are found. In the local toric Calabi-Yau case, a completely new form of the topological vertex is described. The virtual enumeration of pairs is closely related to the geometry underlying the BPS state counts of Gopakumar and Vafa. We prove that our integrality predictions for Gromov-Witten invariants agree with the BPS integrality. Conversely, the BPS geometry imposes strong conditions on the enumeration of pairs.Comment: Corrected typos and duality error in Proposition 4.6. 47 page

    Complete Nondiagonal Reflection Matrices of RSOS/SOS and Hard Hexagon Models

    Full text link
    In this paper we compute the most general nondiagonal reflection matrices of the RSOS/SOS models and hard hexagon model using the boundary Yang-Baxter equations. We find new one-parameter family of reflection matrices for the RSOS model in addition to the previous result without any parameter. We also find three classes of reflection matrices for the SOS model, which has one or two parameters. For the hard hexagon model which can be mapped to RSOS(5) model by folding four RSOS heights into two, the solutions can be obtained similarly with a main difference in the boundary unitarity conditions. Due to this, the reflection matrices can have two free parameters. We show that these extra terms can be identified with the `decorated' solutions. We also generalize the hard hexagon model by `folding' the RSOS heights of the general RSOS(p) model and show that they satisfy the integrability conditions such as the Yang- Baxter and boundary Yang-Baxter equations. These models can be solved using the results for the RSOS models.Comment: 18pages,Late
    corecore