994 research outputs found

    Granular-Scale Elementary Flux Emergence Episodes in a Solar Active Region

    Get PDF
    We analyze data from Hinode spacecraft taken over two 54-minute periods during the emergence of AR 11024. We focus on small-scale portions within the observed solar active region and discover the appearance of very distinctive small-scale and short-lived dark features in Ca II H chromospheric filtergrams and Stokes I images. The features appear in regions with close-to-zero longitudinal magnetic field, and are observed to increase in length before they eventually disappear. Energy release in the low chromospheric line is detected while the dark features are fading. In time series of magnetograms a diverging bipolar configuration is observed accompanying the appearance of the dark features and the brightenings. The observed phenomena are explained as evidencing elementary flux emergence in the solar atmosphere, i.e small-scale arch filament systems rising up from the photosphere to the lower chromosphere with a length scale of a few solar granules. Brightenings are explained as being the signatures of chromospheric heating triggered by reconnection of the rising loops (once they reached chromospheric heights) with pre-existing magnetic fields as well as to reconnection/cancellation events in U-loop segments of emerging serpentine fields. We study the temporal evolution and dynamics of the events and compare them with the emergence of magnetic loops detected in quiet sun regions and serpentine flux emergence signatures in active regions. Incorporating the novel features of granular-scale flux emergence presented in this study we advance the scenario for serpentine flux emergence.Comment: 24 pages, 9 figures. Accepted for publication in Solar Physic

    Lateral downflows in sunspot penumbral filaments and their temporal evolution

    Full text link
    We study the temporal evolution of downflows observed at the lateral edges of penumbral filaments in a sunspot located very close to the disk center. Our analysis is based on a sequence of nearly diffraction-limited scans of the Fe I 617.3 nm line taken with the CRisp Imaging Spectro-Polarimeter at the Swedish 1 m Solar Telescope. We compute Dopplergrams from the observed intensity profiles using line bisectors and filter the resulting velocity maps for subsonic oscillations. Lateral downflows appear everywhere in the center-side penumbra as small, weak patches of redshifts next to or along the edges of blueshifted flow channels. These patches have an intermittent life and undergo mergings and fragmentations quite frequently. The lateral downflows move together with the hosting filaments and react to their shape variations, very much resembling the evolution of granular convection in the quiet Sun. There is a good relation between brightness and velocity of the flow structures in the center-side penumbra, with downflows being darker than upflows on average, which is again reminiscent of quiet Sun convection. These results point to the existence of overturning convection in sunspot penumbrae, with elongated cells forming filaments where the flow is upward but very inclined, and weak lateral downward flows. In general, the circular polarization profiles emerging from the lateral downflows do not show sign reversals, although sometimes we detect three-lobed profiles which are suggestive of opposite magnetic polarities in the pixel.Comment: 16 pages, 15 figures. Accepted for publication in ApJ. Movies are available at http://spg.iaa.es/download

    Inclinations of small quiet-Sun magnetic features based on a new geometric approach

    Full text link
    High levels of horizontal magnetic flux have been reported in the quiet-Sun internetwork, often based on Stokes profile inversions. Here we introduce a new method for deducing the inclination of magnetic elements and use it to test magnetic field inclinations from inversions. We determine accurate positions of a set of small, bright magnetic elements in high spatial resolution images sampling different photospheric heights obtained by the Sunrise balloon-borne solar observatory. Together with estimates of the formation heights of the employed spectral bands, these provide us with the inclinations of the magnetic features. We also compute the magnetic inclination angle of the same magnetic features from the inversion of simultaneously recorded Stokes parameters. Our new, geometric method returns nearly vertical fields (average inclination of around 14 deg with a relatively narrow distribution having a standard deviation of 6 deg). In strong contrast to this, the traditionally used inversions give almost horizontal fields (average inclination of 75+-8 deg) for the same small magnetic features, whose linearly polarised Stokes profiles are adversely affected by noise. The almost vertical field of bright magnetic features from our geometric method is clearly incompatible with the nearly horizontal magnetic fields obtained from the inversions. This indicates that the amount of magnetic flux in horizontal fields deduced from inversions is overestimated in the presence of weak Stokes signals, in particular if Stokes Q and U are close to or under the noise level. By combining the proposed method with inversions we are not just improving the inclination, but also the field strength. This technique allows us to analyse features that are not reliably treated by inversions, thus greatly extending our capability to study the complete magnetic field of the quiet Sun.Comment: 12 pages, 9 figures, 1 table; Accepted for publication in Astronomy & Astrophysic

    The formation and disintegration of magnetic bright points observed by Sunrise/IMaX

    Full text link
    The evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamic scenarios of evolution. Next we apply statistical methods on roughly 200 observed MBP evolutionary tracks. MBPs are found to be formed by the strengthening of an equipartition field patch, which initially exhibits a moderate downflow. During the evolution, strong downdrafts with an average velocity of 2.4 km/s set in. These flows, taken together with the concurrent strengthening of the field, suggest that we are witnessing the occurrence of convective collapses in these features, although only 30% of them reach kG field strengths. This fraction might turn out to be larger when the new 4 m class solar telescopes are operational as observations of MBPs with current state of the art instrumentation could still be suffering from resolution limitations. Finally, when the bright point disappears (although the magnetic field often continues to exist) the magnetic field strength has dropped to the equipartition level and is generally somewhat weaker than at the beginning of the MBP's evolution. Noteworthy is that in about 10% of the cases we observe in the vicinity of the downflows small-scale strong (exceeding 2 km/s) intergranular upflows related spatially and temporally to these downflows.Comment: 19 pages, 13 figures; final version published in "The Astrophysical Journal

    HINODE Observations of Chromospheric Brightenings in the Ca II H Line during small-scale Flux Emergence Events

    Full text link
    \ion{Ca}{2} H emission is a well-known indicator of magnetic activity in the Sun and other stars. It is also viewed as an important signature of chromospheric heating. However, the \ion{Ca}{2} H line has not been used as a diagnostic of magnetic flux emergence from the solar interior. Here we report on Hinode observations of chromospheric \ion{Ca}{2} H brightenings associated with a repeated, small-scale flux emergence event. We describe this process and investigate the evolution of the magnetic flux, G-band brightness, and \ion{Ca}{2} H intensity in the emerging region. Our results suggest that energy is released in the chromosphere as a consequence of interactions between the emerging flux and the pre-existing magnetic field, in agreement with recent 3D numerical simulations.Comment: 12 Pages, 6 Figures, Accepted for publication in ApJ Letter

    Fluxtube model atmospheres and Stokes V zero-crossing wavelengths

    Get PDF
    First results of the inversion of Stokes I and V profiles from plage regions near disk center are presented. Both low and high spatial resolution spectra of FeI 6301.5 and FeI 6302.5 A obtained with the Advanced Stokes Polarimeter (ASP) have been considered for analysis. The thin flux tube approximation, implemented in an LTE inversion code based on response functions, is used to describe unresolved magnetic elements. The code allows the simultaneous and consistent inference of all atmospheric quantities determining the radiative transfer with the sole assumption of hydrostatic equilibrium. By considering velocity gradients within the tubes we are able to match the full ASP Stokes profiles. The magnetic atmospheres derived from the inversion are characterized by the absence of significant motions in high layers and strong velocity gradients in deeper layers. These are essential to reproduce the asymmetries of the observed profiles. Our scenario predicts a shift of the Stokes V zero-crossing wavelengths which is indeed present in observations made with the Fourier Transform Spectrometer.Comment: To appear in ApJ Letters (1997) (in press

    Dynamics of multi-cored magnetic structures in the quiet Sun

    Full text link
    We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca\,\textsc{ii}\,H filtergrams from \textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are "compressed" by surrounding granules and split when they are "squeezed" between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by \citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.Comment: 12 pages, 7 figures. Accepted in ApJ. Animation 1 can be downloaded from: http://spg.iaa.es/download

    Stokes diagnostics of simulated solar magneto-convection

    Get PDF
    We present results of synthetic spectro-polarimetric diagnostics of radiative MHD simulations of solar surface convection with magnetic fields. Stokes profiles of Zeeman-sensitive lines of neutral iron in the visible and infrared spectral ranges emerging from the simulated atmosphere have been calculated in order to study their relation to the relevant physical quantities and compare with observational results. We have analyzed the dependence of the Stokes-I line strength and width as well as of the Stokes-V signal and asymmetries on the magnetic field strength. Furthermore, we have evaluated the correspondence between the actual velocities in the simulation with values determined from the Stokes-I (Doppler shift of the centre of gravity) and Stokes-V profiles (zero-crossing shift). We confirm that the line weakening in strong magnetic fields results from a higher temperature (at equal optical depth) in the magnetic flux concentrations. We also confirm that considerable Stokes-V asymmetries originate in the peripheral parts of strong magnetic flux concentrations, where the line of sight cuts through the magnetopause of the expanding flux concentration into the surrounding convective donwflow.Comment: Astronomy & Astrophysics, in pres
    corecore