533 research outputs found
A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab
A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave
green laser (532~nm) has been built and installed in Hall A of Jefferson Lab
for high precision Compton polarimetry. The infrared (1064~nm) beam from a
ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator
laser is frequency doubled in a single-pass periodically poled MgO:LiNbO
crystal. The maximum achieved green power at 5 W IR pump power is 1.74 W with a
total conversion efficiency of 34.8\%. The green beam is injected into the
optical resonant cavity and enhanced up to 3.7~kW with a corresponding
enhancement of 3800. The polarization transfer function has been measured in
order to determine the intra-cavity circular laser polarization within a
measurement uncertainty of 0.7\%. The PREx experiment at Jefferson Lab used
this system for the first time and achieved 1.0\% precision in polarization
measurements of an electron beam with energy and current of 1.0~GeV and
50~A.Comment: 20 pages, 22 figures, revised version of arXiv:1601.00251v1,
submitted to NIM
Test of the CLAS12 RICH large scale prototype in the direct proximity focusing configuration
A large area ring-imaging Cherenkov detector has been designed to provide
clean hadron identification capability in the momentum range from 3 GeV/c up to
8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron
beam accelerator facility of Jefferson Laboratory. The adopted solution
foresees a novel hybrid optics design based on aerogel radiator, composite
mirrors and high-packed and high-segmented photon detectors. Cherenkov light
will either be imaged directly (forward tracks) or after two mirror reflections
(large angle tracks). We report here the results of the tests of a large scale
prototype of the RICH detector performed with the hadron beam of the CERN T9
experimental hall for the direct detection configuration. The tests
demonstrated that the proposed design provides the required pion-to-kaon
rejection factor of 1:500 in the whole momentum range.Comment: 15 pages, 23 figures, to appear on EPJ
Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton and
quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They
are sensitive to strange quark contributions to currents in the nucleon, and to
the nucleon axial current. The results indicate strange quark contributions of
< 10% of the charge and magnetic nucleon form factors at these four-momentum
transfers. We also present the first measurement of anapole moment effects in
the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten
Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering
We have measured the beam-normal single-spin asymmetries in elastic
scattering of transversely polarized electrons from the proton, and performed
the first measurement in quasi-elastic scattering on the deuteron, at backward
angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63
GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry
arises due to the imaginary part of the interference of the two-photon exchange
amplitude with that of single photon exchange. Results for the proton are
consistent with a model calculation which includes inelastic intermediate
hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for
the scattering from the neutron is made using a quasi-static deuterium
approximation, and is also in agreement with theory
Measurement of GEp/GMp in ep -> ep to Q2 = 5.6 GeV2
The ratio of the electric and magnetic form factors of the proton, GEp/GMp,
was measured at the Thomas Jefferson National Accelerator Facility (JLab) using
the recoil polarization technique. The ratio of the form factors is directly
proportional to the ratio of the transverse to longitudinal components of the
polarization of the recoil proton in the elastic
reaction. The new data presented in this article span the range 3.5 < Q2 < 5.6
GeV2 and are well described by a linear Q2 fit. Also, the ratio QF2p/F1p
reaches a constant value above Q2=2 GeV2.Comment: 6 pages, 4 figures Added two names to the main author lis
The Quasielastic 3He(e,e'p)d Reaction at Q^2 = 1.5 GeV^2 for Recoil Momenta up to 1 GeV/c
We have studied the quasielastic 3He(e,e'p)d reaction in perpendicular
coplanar kinematics, with the energy and momentum transferred by the electron
fixed at 840 MeV and 1502 MeV/c, respectively. The 3He(e,e'p)d cross section
was measured for missing momenta up to 1000 MeV/c, while the A_TL asymmetry was
extracted for missing momenta up to 660 MeV/c. For missing momenta up to 150
MeV/c, the measured cross section is described well by calculations that use a
variational ground-state wave function of the 3He nucleus derived from a
potential that includes three-body forces. For missing momenta from 150 to 750
MeV/c, strong final-state interaction effects are observed. Near 1000 MeV/c,
the experimental cross section is more than an order of magnitude larger than
predicted by available theories. The A_TL asymmetry displays characteristic
features of broken factorization, and is described reasonably well by available
models.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, v3: changed
conten
Measurement of the 12C(e,e'p)11B Two-Body Breakup Reaction at High Missing Momentum Values
The five-fold differential cross section for the 12C(e,e'p)11B reaction was
determined over a missing momentum range of 200-400 MeV/c, in a kinematics
regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results
and theoretical models and previous lower missing momentum data is shown. The
theoretical calculations agree well with the data up to a missing momentum
value of 325 MeV/c and then diverge for larger missing momenta. The extracted
distorted momentum distribution is shown to be consistent with previous data
and extends the range of available data up to 400 MeV/c.Comment: 12 pages, 1 table and 3 figures for submission to Journal Physics
- …
