36 research outputs found
MicroRNAs in myocardial ischemia: identifying new targets and tools for treating heart disease. New frontiers for miR-medicine
Altered nitric oxide/cGMP platelet signaling pathway in platelets from patients with acute coronary syndromes
Telomere Length Variation in Juvenile Acute Myocardial Infarction.
Leukocyte telomere length (LTL) provides a potential marker of biological age, closely related to the endothelial dysfunction and consequently to the atherosclerotic process. To investigate the relationship between the LTL and the risk of premature acute myocardial infarction and to evaluate the predictive value of LTL on the onset of major cardiovascular events, 199 patients from 18 to 48 years old with first diagnosis of acute myocardial infarction were enrolled and were matched with 190 controls for sex and age (± 1 year). Clinical data and coronary artery disease were evaluated at enrollment and at follow up. LTL was measured at enrollment using a quantitative PCR-based method. No significant differences were observed in LTL between cases and controls (p = 0.20) and with the presence of coronary artery disease in patients (p = 0.47). Hypercholesterolemic cases presented LTL significantly longer than cases without hypercholesterolemia (t/s: 0.82 ± 0.16 p = 0.79 and t/s norm: 0.79 ± 0.19 p = 0.01), as confirmed in multivariate regression analysis (p = 0.005, β = 0.09). Furthermore, multivariate regression analysis showed LTL significantly shorter in hypertensive cases than in normotensive cases (p = 0.04, β = -0.07). One hundred seventy-one cases (86%) ended the average follow up of 9 ± 5 years, 92 (54%) presented a major cardiovascular event. At multivariate regression analysis the LTL detected at enrollment did not represent a predictive factor of major cardiovascular events nor it significantly impacted with cumulative events. Based on present cohort of young Italian patients, the LTL did not represent a marker of acute myocardial infarction nor had a predictive role at medium term follow up
Identification of novel circulating microRNAs in advanced heart failure by next-generation sequencing
Abstract Aims Risk stratification in patients with advanced chronic heart failure (HF) is an unmet need. Circulating microRNA (miRNA) levels have been proposed as diagnostic and prognostic biomarkers in several diseases including HF. The aims of the present study were to characterize HF‐specific miRNA expression profiles and to identify miRNAs with prognostic value in HF patients. Methods and results We performed a global miRNome analysis using next‐generation sequencing in the plasma of 30 advanced chronic HF patients and of matched healthy controls. A small subset of miRNAs was validated by real‐time PCR (P < 0.0008). Pearson's correlation analysis was computed between miRNA expression levels and common HF markers. Multivariate prediction models were exploited to evaluate miRNA profiles' prognostic role. Thirty‐two miRNAs were found to be dysregulated between the two groups. Six miRNAs (miR‐210‐3p, miR‐22‐5p, miR‐22‐3p, miR‐21‐3p, miR‐339‐3p, and miR‐125a‐5p) significantly correlated with HF biomarkers, among which N‐terminal prohormone of brain natriuretic peptide. Inside the cohort of advanced HF population, we identified three miRNAs (miR‐125a‐5p, miR‐10b‐5p, and miR‐9‐5p) altered in HF patients experiencing the primary endpoint of cardiac death, heart transplantation, or mechanical circulatory support implantation when compared with those without clinical events. The three miRNAs added substantial prognostic power to Barcelona Bio‐HF score, a multiparametric and validated risk stratification tool for HF (from area under the curve = 0.72 to area under the curve = 0.82). Conclusions This discovery study has characterized, for the first time, the advanced chronic HF‐specific miRNA expression pattern. We identified a few miRNAs able to improve the prognostic stratification of HF patients based on common clinical and laboratory values. Further studies are needed to validate our results in larger populations
Role of TGF-β1 haplotypes in the occurrence of myocardial infarction in young Italian patients
<p>Abstract</p> <p>Background</p> <p>Transforming growth factor beta 1 (TGF-β1) gene play an important role in the acute myocardial infarction (AMI), however no investigation has been conducted so far in young AMI patients.</p> <p>In this study, we evaluated the influence of TGF-β1 polymorphisms/haplotypes on the onset and progression of AMI in young Italian population.</p> <p>Methods</p> <p>201 cases and 201 controls were genotyped for three TGF-β1 polymorphisms (G-800A, C-509T and Leu10Pro). The main follow-up end-points (mean follow-up, 107 ± 49 months) were death, myocardial infarction or revascularization procedures.</p> <p>Results</p> <p>Significant risk factors were smoking (p < 10<sup>-4</sup>), family history for coronary artery disease (p < 10<sup>-4</sup>), hypercholesterolemia (p = 0.001) and hypertension (p = 0.002). The C-509T and Leu10Pro polymorphisms showed significant differences (p = 0.026 and p = 0.004) between cases and controls.</p> <p>The most common haplotypes revealed a possible protective effect (GCT, OR 0.75, 95% CI 0.57–0.99, p = 0.042) and an increased risk of AMI (GTC, OR 1.51, 95% CI 1.13–2.02, p = 0.005), respectively.</p> <p>No statistical differences were observed in genotype distribution in the follow-up study between the two groups: 61 patients with subsequent events (13 deaths) and 108 without events.</p> <p>Conclusion</p> <p>Even though our results need to be further confirmed in larger studies, this is the first study reporting on a possible role of TGFβ1 common haplotypes in the onset of AMI in young patients.</p
Association between loop diuretic dose changes and outcomes in chronic heart failure: observations from the ESC-EORP Heart Failure Long-Term Registry
[Abstract]
Aims. Guidelines recommend down-titration of loop diuretics (LD) once euvolaemia is achieved. In outpatients with heart
failure (HF), we investigated LD dose changes in daily cardiology practice, agreement with guideline recommendations,
predictors of successful LD down-titration and association between dose changes and outcomes.
Methods
and results.
We included 8130 HF patients from the ESC-EORP Heart Failure Long-Term Registry. Among patients who had dose
decreased, successful decrease was defined as the decrease not followed by death, HF hospitalization, New York Heart
Association class deterioration, or subsequent increase in LD dose. Mean age was 66±13 years, 71% men, 62% HF
with reduced ejection fraction, 19% HF with mid-range ejection fraction, 19% HF with preserved ejection fraction.
Median [interquartile range (IQR)] LD dose was 40 (25–80) mg. LD dose was increased in 16%, decreased in 8.3%
and unchanged in 76%. Median (IQR) follow-up was 372 (363–419) days. Diuretic dose increase (vs. no change) was
associated with HF death [hazard ratio (HR) 1.53, 95% confidence interval (CI) 1.12–2.08; P = 0.008] and nominally
with cardiovascular death (HR 1.25, 95% CI 0.96–1.63; P = 0.103). Decrease of diuretic dose (vs. no change) was
associated with nominally lower HF (HR 0.59, 95% CI 0.33–1.07; P = 0.083) and cardiovascular mortality (HR 0.62 95% CI 0.38–1.00; P = 0.052). Among patients who had LD dose decreased, systolic blood pressure [odds ratio
(OR) 1.11 per 10 mmHg increase, 95% CI 1.01–1.22; P = 0.032], and absence of (i) sleep apnoea (OR 0.24, 95% CI
0.09–0.69; P = 0.008), (ii) peripheral congestion (OR 0.48, 95% CI 0.29–0.80; P = 0.005), and (iii) moderate/severe
mitral regurgitation (OR 0.57, 95% CI 0.37–0.87; P = 0.008) were independently associated with successful decrease.
Conclusion. Diuretic dose was unchanged in 76% and decreased in 8.3% of outpatients with chronic HF. LD dose increase was
associated with worse outcomes, while the LD dose decrease group showed a trend for better outcomes compared
with the no-change group. Higher systolic blood pressure, and absence of (i) sleep apnoea, (ii) peripheral congestion,
and (iii) moderate/severe mitral regurgitation were independently associated with successful dose decrease
Sex- and age-related differences in the management and outcomes of chronic heart failure: an analysis of patients from the ESC HFA EORP Heart Failure Long-Term Registry
Aims: This study aimed to assess age- and sex-related differences in management and 1-year risk for all-cause mortality and hospitalization in chronic heart failure (HF) patients. Methods and results: Of 16 354 patients included in the European Society of Cardiology Heart Failure Long-Term Registry, 9428 chronic HF patients were analysed [median age: 66 years; 28.5% women; mean left ventricular ejection fraction (LVEF) 37%]. Rates of use of guideline-directed medical therapy (GDMT) were high (angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, beta-blockers and mineralocorticoid receptor antagonists: 85.7%, 88.7% and 58.8%, respectively). Crude GDMT utilization rates were lower in women than in men (all differences: P\ua0 64 0.001), and GDMT use became lower with ageing in both sexes, at baseline and at 1-year follow-up. Sex was not an independent predictor of GDMT prescription; however, age >75 years was a significant predictor of GDMT underutilization. Rates of all-cause mortality were lower in women than in men (7.1% vs. 8.7%; P\ua0=\ua00.015), as were rates of all-cause hospitalization (21.9% vs. 27.3%; P\ua075 years. Conclusions: There was a decline in GDMT use with advanced age in both sexes. Sex was not an independent predictor of GDMT or adverse outcomes. However, age >75 years independently predicted lower GDMT use and higher all-cause mortality in patients with LVEF 6445%
