178 research outputs found

    Star Formation Near Photodissociation Regions: Detection of a Peculiar Protostar Near Ced 201

    Full text link
    We present the detection and characterization of a peculiar low-mass protostar (IRAS 22129+7000) located ~0.4 pc from Ced 201 Photodissociation Region (PDR) and ~0.2 pc from the HH450 jet. The cold circumstellar envelope surrounding the object has been mapped through its 1.2 mm dust continuum emission with IRAM-30m/MAMBO. The deeply embedded protostar is clearly detected with Spitzer/MIPS (70 um), IRS (20-35 um) and IRAC (4.5, 5.8, and 8 um) but also in the K_s band (2.15 um). Given the large "near- and mid-IR excess" in its spectral energy distribution, but large submillimeter-to-bolometric luminosity ratio (~2%), IRAS 22129+7000 must be a transition Class 0/I source and/or a multiple stellar system. Targeted observations of several molecular lines from CO, 13CO, C18O, HCO+ and DCO+ have been obtained. The presence of a collimated molecular outflow mapped with the CSO telescope in the CO J=3-2 line suggests that the protostar/disk system is still accreting material from its natal envelope. Indeed, optically thick line profiles from high density tracers such as HCO+ J=1-0 show a red-shifted-absorption asymmetry reminiscent of inward motions. We construct a preliminary physical model of the circumstellar envelope (including radial density and temperature gradients, velocity field and turbulence) that reproduces the observed line profiles and estimates the ionization fraction. The presence of both mechanical and (non-ionizing) FUV-radiative input makes the region an interesting case to study triggered star formation

    Synthetic Molecular Clouds from Supersonic MHD and Non-LTE Radiative Transfer Calculations

    Get PDF
    The dynamics of molecular clouds is characterized by supersonic random motions in the presence of a magnetic field. We study this situation using numerical solutions of the three-dimensional compressible magneto-hydrodynamic (MHD) equations in a regime of highly supersonic random motions. The non-LTE radiative transfer calculations are performed through the complex density and velocity fields obtained as solutions of the MHD equations, and more than 5x10^5 synthetic molecular spectra are obtained. We use a numerical flow without gravity or external forcing. The flow is super-Alfvenic and corresponds to model A of Padoan and Nordlund (1997). Synthetic data consist of sets of 90x90 synthetic spectra with 60 velocity channels, in five molecular transitions: J=1-0 and J=2-1 for 12CO and 13CO, and J=1-0 for CS. Though we do not consider the effects of stellar radiation, gravity, or mechanical energy input from discrete sources, our models do contain the basic physics of magneto-fluid dynamics and non-LTE radiation transfer and are therefore more realistic than previous calculations. As a result, these synthetic maps and spectra bear a remarkable resemblance to the corresponding observations of real clouds.Comment: 33 pages, 12 figures included, 5 jpeg figures not included (fig1a, fig1b, fig3, fig4 fig5), submitted to Ap

    Numerical methods for non-LTE line radiative transfer: Performance and convergence characteristics

    Get PDF
    Comparison is made between a number of independent computer programs for radiative transfer in molecular rotational lines. The test models are spherically symmetric circumstellar envelopes with a given density and temperature profile. The first two test models have a simple power law density distribution, constant temperature and a fictive 2-level molecule, while the other two test models consist of an inside-out collapsing envelope observed in rotational transitions of HCO+. For the 2-level molecule test problems all codes agree well to within 0.2%, comparable to the accuracy of the individual codes, for low optical depth and up to 2% for high optical depths (tau=4800). The problem of the collapsing cloud in HCO+ has a larger spread in results, ranging up to 12% for the J=4 population. The spread is largest at the radius where the transition from collisional to radiative excitation occurs. The resulting line profiles for the HCO+ J=4-3 transition agree to within 10%, i.e., within the calibration accuracy of most current telescopes. The comparison project and the results described in this paper provide a benchmark for future code development, and give an indication of the typical accuracy of present day calculations of molecular line transfer.Comment: Accepted for publication in A&

    Molecular line radiative transfer in protoplanetary disks: Monte Carlo simulations versus approximate methods

    Full text link
    We analyze the line radiative transfer in protoplanetary disks using several approximate methods and a well-tested Accelerated Monte Carlo code. A low-mass flaring disk model with uniform as well as stratified molecular abundances is adopted. Radiative transfer in low and high rotational lines of CO, C18O, HCO+, DCO+, HCN, CS, and H2CO is simulated. The corresponding excitation temperatures, synthetic spectra, and channel maps are derived and compared to the results of the Monte Carlo calculations. A simple scheme that describes the conditions of the line excitation for a chosen molecular transition is elaborated. We find that the simple LTE approach can safely be applied for the low molecular transitions only, while it significantly overestimates the intensities of the upper lines. In contrast, the Full Escape Probability (FEP) approximation can safely be used for the upper transitions (J_{\rm up} \ga 3) but it is not appropriate for the lowest transitions because of the maser effect. In general, the molecular lines in protoplanetary disks are partly subthermally excited and require more sophisticated approximate line radiative transfer methods. We analyze a number of approximate methods, namely, LVG, VEP (Vertical Escape Probability) and VOR (Vertical One Ray) and discuss their algorithms in detail. In addition, two modifications to the canonical Monte Carlo algorithm that allow a significant speed up of the line radiative transfer modeling in rotating configurations by a factor of 10--50 are described.Comment: 47 pages, 12 figures, accepted for publication in Ap

    Tracing the envelopes around embedded low-mass young stellar objects with HCO+ and millimeter-continuum observations

    Get PDF
    Interferometer observations of millimeter-continuum (OVRO) and single-dish observations of HCO+ and H13CO+ J=1-0, 3-2, and 4-3 (JCMT, IRAM 30m) are presented of nine embedded low-mass young stellar objects (YSOs) in Taurus. All nine objects are detected at 3.4 and 2.7 mm, with fluxes of 4-200 mJy, and consist of unresolved (<3 arcsec) point sources, plus, toward about half of the objects, an extended envelope. The point sources likely are circumstellar disks, showing that these are established early in the embedded phase. Literature values of 1.1 mm continuum emission are used to trace the envelopes, carrying 0.001-0.26 M(sol). In HCO+, the 1-0 lines trace the surrounding clouds, while the 3-2 and 4-3 are concentrated toward the sources with intensities well correlated with the envelope flux. An HCO+/H2 abundance of 1.2e-8 is derived. The HCO+ line strengths and envelope fluxes can be fit simultaneously with the simple collapse model of Shu (1977), and related density power laws with slopes p=1-3. As an indicator of the relative evolutionary phase of a YSO, the ratio of HCO+ 3-2 line intensity over bolometric luminosity is proposed, which is roughly proportional to the current ratio of envelope over stellar mass. It is concluded that HCO+ 3-2 and 4-3 are excellent tracers of the early embedded phase of star formation.Comment: 45 pages, 10 figures, ApJ/AASLaTeX. To be published in The Astrophysical Journa

    Primordial helium recombination. I. Feedback, line transfer, and continuum opacity

    Get PDF
    Precision measurements of the cosmic microwave background temperature anisotropy on scales ℓ>500 will be available in the near future. Successful interpretation of these data is dependent on a detailed understanding of the damping tail and cosmological recombination of both hydrogen and helium. This paper and two companion papers are devoted to a precise calculation of helium recombination. We discuss several aspects of the standard recombination picture, and then include feedback, radiative transfer in He i lines with partial redistribution, and continuum opacity from H i photoionization. In agreement with past calculations, we find that He ii recombination proceeds in Saha equilibrium, whereas He i recombination is delayed relative to Saha due to the low rates connecting excited states of He i to the ground state. However, we find that at z<2200 the continuum absorption by the rapidly increasing H i population becomes effective at destroying photons in the He i 21Po-11S line, causing He i recombination to finish around z≃1800, much earlier than previously estimated

    Systematic Molecular Differentiation in Starless Cores

    Get PDF
    (Abridged) We present evidence that low-mass starless cores, the simplest units of star formation, are systematically differentiated in their chemical composition. Molecules including CO and CS almost vanish near the core centers, where the abundance decreases by one or two orders of magnitude. At the same time, N2H+ has a constant abundance, and the fraction of NH3 increases toward the core center. Our conclusions are based on a study of 5 mostly-round starless cores (L1498, L1495, L1400K, L1517B, and L1544), which we have mappedin C18O(1-0), C17O(1-0), CS(2-1), C34S(2-1), N2H+(1-0), NH3(1,1) and (2,2), and the 1.2 mm continuum. For each core we have built a model that fits simultaneously the radial profile of all observed emission and the central spectrum for the molecular lines. The observed abundance drops of CO and CS are naturally explained by the depletion of these molecules onto dust grains at densities of 2-6 10^4 cm-3. N2H+ seems unaffected by this process up to densities of several 10^5, while the NH3 abundance may be enhanced by reactions triggered by the disappearance of CO from the gas phase. With the help of our models, we show that chemical differentiation automatically explains the discrepancy between the sizes of CS and NH3 maps, a problem which has remained unexplained for more than a decade. Our models, in addition, show that a combination of radiative transfer effects can give rise to the previously observed discrepancy in the linewidth of these two tracers. Although this discrepancy has been traditionally interpreted as resulting from a systematic increase of the turbulent linewidth with radius, our models show that it can arise in conditions of constant gas turbulence.Comment: 25 pages, 9 figures, accepted by Ap

    Further Evidence for Chemical Fractionation from Ultraviolet Observations of Carbon Monoxide

    Get PDF
    Ultraviolet absorption from interstellar 12CO and 13CO was detected toward rho Oph A and chi Oph. The measurements were obtained at medium resolution with the Goddard High Resolution Spectrograph on the Hubble Space Telescope. Column density ratios, N(12CO)/N(13CO), of 125 \pm 23 and 117 \pm 35 were derived for the sight lines toward rho Oph A and chi Oph, respectively. A value of 1100 \pm 600 for the ratio N(12C16O)/N(12C18O) toward rho Oph A was also obtained. Absorption from vibrationally excited H_2 (v" = 3) was clearly seen toward this star as well. The ratios are larger than the isotopic ratios for carbon and oxygen appropriate for ambient interstellar material. Since for both carbon and oxygen the more abundant isotopomer is enhanced, selective isotopic photodissociation plays the key role in the fractionation process for these directions. The enhancement arises because the more abundant isotopomer has lines that are more optically thick, resulting in more self shielding from dissociating radiation. A simple argument involving the amount of self shielding [from N(12CO)] and the strength of the ultraviolet radiation field premeating the gas (from the amount of vibrationally excited H_2) shows that selective isotopic photodissociation controls the fractionation seen in these two sight lines, as well as the sight line to zeta Oph.Comment: 40 pages, 8 figures, to appear in 10 July 2003 issue of Ap

    Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes

    Full text link
    We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re

    An atomic and molecular database for analysis of submillimetre line observations

    Full text link
    Atomic and molecular data for the transitions of a number of astrophysically interesting species are summarized, including energy levels, statistical weights, Einstein A-coefficients and collisional rate coefficients. Available collisional data from quantum chemical calculations and experiments are extrapolated to higher energies. These data, which are made publically available through the WWW at http://www.strw.leidenuniv.nl/~moldata, are essential input for non-LTE line radiative transfer programs. An online version of a computer program for performing statistical equilibrium calculations is also made available as part of the database. Comparisons of calculated emission lines using different sets of collisional rate coefficients are presented. This database should form an important tool in analyzing observations from current and future (sub)millimetre and infrared telescopes.Comment: Accepted for publication in A&A, 14 pages, 5 figure
    corecore