25 research outputs found
Level of integration into university life among Social Sciences students coming from rural areas
Abstract onlyThe study, "Level of Integration Into University Life Among Social Sciences Students Coming From Rural Areas," utilized a descriptive quantitative method to assess integration levels among respondents from rural areas within the College of Ails and Sciences. It surveyed 131 Bachelor of Arts in Political Science and 89 Bachelor of Science in Psychology students with overall 220, focusing on those residing outside city parameters. Data were collected via Google Forms and analyzed using SPSS v23. Results revealed that the level of integration into university life is average (x=3.48) when taken as a whole according to sex, course and extra-curricular involvement. In terms of sex, the male has high level (x=3.67) while the female has average (x=3.38), in the course where Bachelor of Arts in Political Science has high (x=3.66) while Bachelor of Science in Psychology has average (x= 3.37), and in extra-curricular involvement participants has high (x=3.64) while non-participants has average (x=3.28). Using Mann-Whitney U Test, the study revealed that there was a significant difference when grouped according to sex (p <0.0001) where males were significantly higher compared to females, when grouped according to courses (p <0.0001) the Bachelor of Alts in Political Science and Public Administration was significantly higher compared to the Bachelor of Science in Psychology, and extra-curricular involvement (p <0.0001) where participants were significantly higher compared to non-participants. The study underscores the significance of extracurricular involvement for curriculum development and provides insights for institutions to facilitate the integration of rural students. It also offers guidance for further study on the dynamics of integration and what drives different student demographics.Includes bibliographical referencesBachelor of Science in Psycholog
Recommended from our members
Measurement Report: Firework Impacts on Air Quality in Metro Manila, Philippines, during the 2019 New Year Revelry
Fireworks degrade air quality, reduce visibility, alter atmospheric chemistry, and cause short-term adverse health effects. However, there have not been any comprehensive physicochemical and optical measurements of fireworks and their associated impacts in a Southeast Asia megacity, where fireworks are a regular part of the culture. Size-resolved particulate matter (PM) measurements were made before, during, and after New Year 2019 at the Manila Observatory in Quezon City, Philippines, as part of the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex). A high-spectral-resolution lidar (HSRL) recorded a substantial increase in backscattered signal associated with high aerosol loading ∼440 m above the surface during the peak of firework activities around 00:00 (local time). This was accompanied by PM2.5 concentrations peaking at 383.9 µg m−3. During the firework event, water-soluble ions and elements, which affect particle formation, growth, and fate, were mostly in the submicrometer diameter range. Total (\u3e0.056 µm) water-soluble bulk particle mass concentrations were enriched by 5.7 times during the fireworks relative to the background (i.e., average of before and after the firework). The water-soluble mass fraction of PM2.5 increased by 18.5 % above that of background values. This corresponded to increased volume fractions of inorganics which increased bulk particle hygroscopicity, kappa (κ), from 0.11 (background) to 0.18 (fireworks). Potassium and non-sea-salt (nss) SO42- role= presentation style= box-sizing: border-box; border-radius: 0px; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e2−4 contributed the most (70.9 %) to the water-soluble mass, with their mass size distributions shifting from a smaller to a larger submicrometer mode during the firework event. On the other hand, mass size distributions for NO3- role= presentation style= box-sizing: border-box; border-radius: 0px; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative; \u3e−3, Cl−, and Mg2+ (21.1 % mass contribution) shifted from a supermicrometer mode to a submicrometer mode. Being both uninfluenced by secondary aerosol formation and constituents of firework materials, a subset of species were identified as the best firework tracer species (Cu, Ba, Sr, K+, Al, and Pb). Although these species (excluding K+) only contributed 2.1 % of the total mass concentration of water-soluble ions and elements, they exhibited the highest enrichments (6.1 to 65.2) during the fireworks. Surface microscopy analysis confirmed the presence of potassium/chloride-rich cubic particles along with capsule-shaped particles in firework samples. The results of this study highlight how firework emissions change the physicochemical and optical properties of water-soluble particles (e.g., mass size distribution, composition, hygroscopicity, and aerosol backscatter), which subsequently alters the background aerosol\u27s respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN)
Total Organic Carbon and the Contribution From Speciated Organics in Cloud Water: Airborne Data Analysis From the CAMP2Ex Field Campaign
This work focuses on total organic carbon (TOC) and contributing species in cloud water over Southeast Asia using a rare airborne dataset collected during NASA’s Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex), in which a wide variety of maritime clouds were studied, including cumulus congestus, altocumulus, altostratus, and cumulus. Knowledge of TOC masses and their contributing species is needed for improved modeling of cloud processing of organics and to understand how aerosols and gases impact and are impacted by clouds. This work relies on 159 samples collected with an axial cyclone cloudwater collector at altitudes of 0.2–6.8 km that had sufficient volume for both TOC and speciated organic composition analysis. Species included monocarboxylic acids (glycolate, acetate, formate, and pyruvate), dicarboxylic acids (glutarate, adipate, succinate, maleate, and oxalate), methanesulfonic acid (MSA), and dimethylamine (DMA). TOC values range between 0.018 and 13.66 ppm C with a mean of 0.902 ppm C. The highest TOC values are observed below 2 km with a general reduction aloft. An exception is samples impacted by biomass burning for which TOC remains enhanced at altitudes as high as 6.5 km (7.048 ppm C). Estimated total organic matter derived from TOC contributes a mean of 30.7 % to total measured mass (inorganics + organics). Speciated organics contribute (on a carbon mass basis) an average of 30.0 % to TOC in the study region and account for an average of 10.3 % to total measured mass.
The order of the average contribution of species to TOC, in decreasing contribution of carbon mass, is as follows (±1 standard deviation): acetate (14.7 ± 20.5 %), formate (5.4 ± 9.3 %), oxalate (2.8 ± 4.3 %), DMA (1.7 ± 6.3 %), succinate (1.6 ± 2.4 %), pyruvate (1.3 ± 4.5 %), glycolate (1.3 ± 3.7 %), adipate (1.0 ± 3.6 %), MSA (0.1 ± 0.1 %), glutarate (0.1 ± 0.2 %), and maleate (\u3c 0.1 ± 0.1 %). Approximately 70 % of TOC remains unaccounted for, highlighting the complex nature of organics in the study region; in samples collected in biomass burning plumes, up to 95.6 % of TOC mass is unaccounted for based on the species detected. Consistent with other regions, monocarboxylic acids dominate the speciated organic mass (∼ 75 %) and are about 4 times more abundant than dicarboxylic acids. Samples are categorized into four cases based on backtrajectory history, revealing source-independent similarity between the bulk contributions of monocarboxylic and dicarboxylic acids to TOC (16.03 %–23.66 % and 3.70 %–8.75 %, respectively). Furthermore, acetate, formate, succinate, glutarate, pyruvate, oxalate, and MSA are especially enhanced during biomass burning periods, which is attributed to peat emissions transported from Sumatra and Borneo. Lastly, dust (Ca2+) and sea salt (Na+/Cl−) tracers exhibit strong correlations with speciated organics, supporting how coarse aerosol surfaces interact with these water-soluble organics
Spatially-coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: The NASA ACTIVATE dataset
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol-cloud-meteorology interactions. An HU-25 Falcon and King Air conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes
Security and performance of remote patient monitoring for chronic heart failure with Satelia® Cardio: First results from real-world use
Background: Since 2019, remote patient monitoring (RPM) for patients with chronic heart failure (CHF) has been supported by the European Society of Cardiology. However, real-world data on the use of such solutions has been limited and not primarily based on patient-reported outcomes. The aim of this study was to describe the Satelia® Cardio solution in France within the French ETAPES funding program and assess the security and performance of its clinical algorithm.Methods: A retrospective observational study was conducted on CHF patients monitored by RPM through Satelia® Cardio. From September 1, 2018, to June 30, 2020, patients were included if they had completed over six months of follow-up. The risk of a possible CHF decompensation was categorized by the system in three levels: green, orange and red. The algorithm security and performance were assessed through the negative predictive value (NPV) of the prediction of hospitalization of a patient within seven days.Results: In total, 331 patients were included in this study with 36,682 patient self-administered questionnaires answered. Patients were mostly males (70.4%) and had a mean age of 68.1 years. The mean left ventricular ejection fraction (LVEF) was 35.4% (± 12.3) and 73.3% of patients had a LVEF ≤ 40%. The questionnaire response rate was 90.9%. A green status was generated for 95.3% of answers. There were 4.5% (n = 1,499) orange alerts and 0.2% (n = 74) red alerts. Overall, 92.1% of patients had at least one CHF related hospitalization and 31.7% (n = 105) of these cases were non-scheduled. The NPV at seven days was 99.43%.Conclusion: Satelia® Cardio is a feasible, relevant and reliable solution to safely monitor the cohorts of patients with CHF, reassuring cardiologists about patient stability
Sphingosine 1-phosphate (S1P) promotes mitochondrial biogenesis in Hep G2 cells by activating Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α)
Measurement report: Firework impacts on air quality in Metro Manila, Philippines, during the 2019 New Year revelry
Abstract. Fireworks degrade air quality, reduce visibility, alter atmospheric chemistry, and cause short-term adverse health effects. However, there have not been any comprehensive physicochemical and optical measurements of fireworks and their associated impacts in a Southeast Asia megacity, where fireworks are a regular part of the culture. Size-resolved particulate matter (PM) measurements were made before, during, and after New Year 2019 at the Manila Observatory in Quezon City, Philippines, as part of the Cloud, Aerosol, and Monsoon Processes Philippines Experiment (CAMP2Ex). A high-spectral-resolution lidar (HSRL) recorded a substantial increase in backscattered signal associated with high aerosol loading ∼440 m above the surface during the peak of firework activities around 00:00 (local time). This was accompanied by PM2.5 concentrations peaking at 383.9 µg m−3. During the firework event, water-soluble ions and elements, which affect particle formation, growth, and fate, were mostly in the submicrometer diameter range. Total (>0.056 µm) water-soluble bulk particle mass concentrations were enriched by 5.7 times during the fireworks relative to the background (i.e., average of before and after the firework). The water-soluble mass fraction of PM2.5 increased by 18.5 % above that of background values. This corresponded to increased volume fractions of inorganics which increased bulk particle hygroscopicity, kappa (κ), from 0.11 (background) to 0.18 (fireworks). Potassium and non-sea-salt (nss) SO42- contributed the most (70.9 %) to the water-soluble mass, with their mass size distributions shifting from a smaller to a larger submicrometer mode during the firework event. On the other hand, mass size distributions for NO3-, Cl−, and Mg2+ (21.1 % mass contribution) shifted from a supermicrometer mode to a submicrometer mode. Being both uninfluenced by secondary aerosol formation and constituents of firework materials, a subset of species were identified as the best firework tracer species (Cu, Ba, Sr, K+, Al, and Pb). Although these species (excluding K+) only contributed 2.1 % of the total mass concentration of water-soluble ions and elements, they exhibited the highest enrichments (6.1 to 65.2) during the fireworks. Surface microscopy analysis confirmed the presence of potassium/chloride-rich cubic particles along with capsule-shaped particles in firework samples. The results of this study highlight how firework emissions change the physicochemical and optical properties of water-soluble particles (e.g., mass size distribution, composition, hygroscopicity, and aerosol backscatter), which subsequently alters the background aerosol's respirability, influence on surroundings, ability to uptake gases, and viability as cloud condensation nuclei (CCN).</jats:p
