84 research outputs found

    Liouville integrability of a class of integrable spin Calogero-Moser systems and exponents of simple Lie algebras

    Full text link
    In previous work, we introduced a class of integrable spin Calogero-Moser systems associated with the classical dynamical r-matrices with spectral parameter, as classified by Etingof and Varchenko for simple Lie algebras. Here the main purpose is to establish the Liouville integrability of these systems by a uniform method

    Combinatorics of BB-orbits and Bruhat--Chevalley order on involutions

    Full text link
    Let BB be the group of invertible upper-triangular complex n×nn\times n matrices, u\mathfrak{u} the space of upper-triangular complex matrices with zeroes on the diagonal and u\mathfrak{u}^* its dual space. The group BB acts on u\mathfrak{u}^* by (g.f)(x)=f(gxg1)(g.f)(x)=f(gxg^{-1}), gBg\in B, fuf\in\mathfrak{u}^*, xux\in\mathfrak{u}. To each involution σ\sigma in SnS_n, the symmetric group on nn letters, one can assign the BB-orbit Ωσu\Omega_{\sigma}\in\mathfrak{u}^*. We present a combinatorial description of the partial order on the set of involutions induced by the orbit closures. The answer is given in terms of rook placements and is dual to A. Melnikov's results on BB-orbits on u\mathfrak{u}. Using results of F. Incitti, we also prove that this partial order coincides with the restriction of the Bruhat--Chevalley order to the set of involutions.Comment: 27 page

    Schubert Polynomials for the affine Grassmannian of the symplectic group

    Full text link
    We study the Schubert calculus of the affine Grassmannian Gr of the symplectic group. The integral homology and cohomology rings of Gr are identified with dual Hopf algebras of symmetric functions, defined in terms of Schur's P and Q-functions. An explicit combinatorial description is obtained for the Schubert basis of the cohomology of Gr, and this is extended to a definition of the affine type C Stanley symmetric functions. A homology Pieri rule is also given for the product of a special Schubert class with an arbitrary one.Comment: 45 page

    Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams

    Full text link
    We consider the problem of finding the number of matrices over a finite field with a certain rank and with support that avoids a subset of the entries. These matrices are a q-analogue of permutations with restricted positions (i.e., rook placements). For general sets of entries these numbers of matrices are not polynomials in q (Stembridge 98); however, when the set of entries is a Young diagram, the numbers, up to a power of q-1, are polynomials with nonnegative coefficients (Haglund 98). In this paper, we give a number of conditions under which these numbers are polynomials in q, or even polynomials with nonnegative integer coefficients. We extend Haglund's result to complements of skew Young diagrams, and we apply this result to the case when the set of entries is the Rothe diagram of a permutation. In particular, we give a necessary and sufficient condition on the permutation for its Rothe diagram to be the complement of a skew Young diagram up to rearrangement of rows and columns. We end by giving conjectures connecting invertible matrices whose support avoids a Rothe diagram and Poincar\'e polynomials of the strong Bruhat order.Comment: 24 pages, 9 figures, 1 tabl

    Weak splittings of quotients of Drinfeld and Heisenberg doubles

    Full text link
    We investigate the fine structure of the simplectic foliations of Poisson homogeneous spaces. Two general results are proved for weak splittings of surjective Poisson submersions from Heisenberg and Drinfeld doubles. The implications of these results are that the torus orbits of symplectic leaves of the quotients can be explicitly realized as Poisson-Dirac submanifolds of the torus orbits of the doubles. The results have a wide range of applications to many families of real and complex Poisson structures on flag varieties. Their torus orbits of leaves recover important families of varieties such as the open Richardson varieties.Comment: 20 pages, AMS Late

    BPS Operators in N=4 SYM: Calogero Models and 2D Fermions

    Full text link
    A connection between the gauge fixed dynamics of protected operators in superconformal Yang-Mills theory in four dimensions and Calogero systems is established. This connection generalizes the free Fermion description of the chiral primary operators of the gauge theory formed out of a single complex scalar to more general operators. In particular, a detailed analysis of protected operators charged under an su(1|1)contained in psu(2,2|4) is carried out and a class of operators is identified, whose dynamics is described by the rational super-Calogero model. These results are generalized to arbitrary BPS operators charged under an su(2|3) of the superconformal algebra. Analysis of the non-local symmetries of the super-Calogero model is also carried out, and it is shown that symmetry for a large class of protected operators is a contraction of the corresponding Yangian algebra to a loop algebra.Comment: 29 pages, 3 figure

    Asymmetric function theory

    Full text link
    The classical theory of symmetric functions has a central position in algebraic combinatorics, bridging aspects of representation theory, combinatorics, and enumerative geometry. More recently, this theory has been fruitfully extended to the larger ring of quasisymmetric functions, with corresponding applications. Here, we survey recent work extending this theory further to general asymmetric polynomials.Comment: 36 pages, 8 figures, 1 table. Written for the proceedings of the Schubert calculus conference in Guangzhou, Nov. 201

    On the Fully Commutative Elements of Coxeter Groups

    Full text link
    Let W be a Coxeter group. We define an element w ∈ W to be fully commutative if any reduced expression for w can be obtained from any other by means of braid relations that only involve commuting generators. We give several combinatorial characterizations of this property, classify the Coxeter groups with finitely many fully commutative elements, and classify the parabolic quotients whose members are all fully commutative. As applications of the latter, we classify all parabolic quotients with the property that (1) the Bruhat ordering is a lattice, (2) the Bruhat ordering is a distributive lattice, (3) the weak ordering is a distributive lattice, and (4) the weak ordering and Bruhat ordering coincide.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46269/1/10801_2005_Article_415276.pd
    corecore