56 research outputs found
Study on cycle-slip detection and repair methods for a single dual-frequency global positioning system (GPS) receiver
In this work, we assessed the performance of the cycle-slip detection methods: Turbo Edit (TE), Melbourne-Wübbena wide-lane ambiguity (MWWL) and forward and backward moving window averaging (FBMWA). The TE and MWWL methods were combined with ionospheric total electron content rate (TECR), and the FBMWA with second-order time-difference phase ionosphere residual (STPIR) and TECR. Under different scenarios, 10 Global Positioning System (GPS) datasets were used to assess the performance of the methods for cycle-slip detection. The MWWL-TECR delivered the best performance in detecting cycle-slips for 1 s data. The relative comparisons show that the FBMWA-TECR method performed slightly better than its original version, FBMWA-STPIR, detecting 100% and 73%, respectively. For data with a sample rate of 5 s, the FBMWA-TECR performed better than MWWL-TECR. However, the FBMWA is suitable only for post-processing, which refers to applications where the data are processed after the fact
Review and principles of PPP-RTK methods
PPP-RTK is integer ambiguity resolution-enabled precise point positioning. In this contribution, we present the principles of PPP-RTK, together with a review of different mechanizations that have been proposed in the literature. By application of S-system theory, the estimable parameters of the different methods are identified and compared. Their interpretation is essential for gaining a proper insight into PPP-RTK in general, and into the role of the PPP-RTK corrections in particular. We show that PPP-RTK is a relative technique for which the ‘single-receiver user’ integer ambiguities are in fact double-differenced ambiguities. We determine the transformational links between the different methods and their PPP-RTK corrections, thereby showing how different PPP-RTK methods can be mixed between network and users. We also present and discuss four different estimators of the PPP-RTK corrections. It is shown how they apply to the different PPP-RTK models, as well as why some of the proposed estimation methods cannot be accepted as PPP-RTK proper. We determine analytical expressions for the variance matrices of the ambiguity-fixed and ambiguity-float PPP-RTK corrections. This gives important insight into their precision, as well as allows us to discuss which parts of the PPP-RTK correction variance matrix are essential for the user and which are not
Recent Developments in Precise Point Positioning
In standard Precise Point Positioning (PPP), the carrier phase ambiguities are estimated as real-valued constants, so that the carrier-phases can provide similar information as the pseudoranges. As a consequence, it can take tens of minutes to several hours for the ambiguities to converge to suitably precise values. Recently, new processing methods have been identified that permit the ambiguities to be estimated more appropriately as integer-valued constants, as they are in relative Real-Time Kinematic (RTK) positioning. Under these conditions, standard ambiguity resolution techniques can be applied to strengthen the PPP solution. The result can be a greatly reduced solution convergence and re-convergence period, representing a significant step toward improving the performance of PPP with respect to that of RTK processing. This paper describes the underlying principles of the method, why the enhancements work, and presents some results. </jats:p
Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect
Within the last decade, GNSS Precise Point Positioning (PPP) has generated unprecedented interest among the GNSS community and is being used for a number of scientific and commercial applications today. Similar to the conventional relative positioning technique, PPP could provide positioning solutions at centimeter-level precision by making use of the precise carrier phase measurements and high-accuracy satellite orbits and clock corrections provided by, for example, the International GNSS Service. The PPP technique is attractive as it is computationally efficient; it eliminates the need for simultaneous observations at both the reference and rover receivers; it also eliminates the needs for the rover receiver to operate within the vicinity of the reference receiver; and it provides homogenous positioning quality within a consistent global frame anywhere in the world with a single GNSS receiver. Although PPP has definite advantages for many applications, its merits and widespread adoption are significantly limited by the long convergence time, which restricts the use of the PPP technique for many real-time GNSS applications. We provide an overview of the current performance of PPP as well as attempt to address some of the common misconceptions of this positioning technique-considered by many as the future of satellite positioning and navigation. Given the upcoming modernization and deployment of GNSS satellites over the next few years, it would be appropriate to address the potential impacts of these signals and constellations on the future prospect of PPP
The Use of a GPS-Equipped Buoy For Water Level Determination
In recent years, Global Positioning System (GPS) receivers have been placed on buoys to determine sea surface height. The Naval Oceanographic Office (NAVOCEANO) has become interested in this application for tides work and has sponsored a series of GPS buoy experiments in Mississippi coastal waters. The primary goal of the experiments was the determination of water level with GPS using the WGS84 reference ellipsoid as a tidal benchmark. Also of importance was the determination of the minimum buoy sensor configuration (aside from GPS) required to accomplish this measurement, and to evaluate RTK GPS performance over time and distance. The fully integrated buoy was deployed in 2001, 2002, and 2003. The 2001 RTK results were analyzed for solution availability, solution quality, and solution correlation with other sensor output. Solution availability was high during buoy operational periods; however, the solution quality was hampered by an apparent GPS filter-based anomaly in the receiver RTK processing. Tide gauge comparison indicated subdecimeter-level water level recovery was attainable. Initial processing of 2002 data produced cm-level differences between RTK and tide gauge water levels. These initial results show great promise for the use of RTK buoys in water level recovery, and more data collection and analysis will be undertaken with the 2003 deployment
Comparisons of Satellite and Airborne Altimetry With Ground‐Based Data From the Interior of the Antarctic Ice Sheet
THE EFFECT OF GRAPHITE TUBE CONDITION ON MEASURED TRACE Pb CONCENTRATIONS IN ETAA STUDIES
Evaluation of Network RTK Performance and Elements of Certification—A Southern Ontario Case Study
Over the past decade, network RTK technology has become popular as an efficient method of precise, real-time positioning. Its relatively low-cost and single receiver ease-of-use has allowed it to mostly replace static relative GPS and single baseline RTK in urban areas where such networks are economically viable (e.g., cadastral and construction survey). The Ministry of Transportation of Ontario (MTO) and York University have investigated the performance of commercial network RTK services in Southern Ontario, where performance is defined by a set of developed metrics. It was found that the user horizontal solution had an overall precision of ∼2.5 cm (95%), though there were cases of solution biases, drifts and gaps. A follow-up study is developing criteria and pathways for the certification of such commercial network RTK services, focusing on: reference station integration, reference station maintenance, and user solution monitoring. A set of recommendations for network certification is in preparation. </jats:p
- …
