4,845 research outputs found
Positionally dependent ^(15)N fraction factors in the UV photolysis of N_2O determined by high resolution FTIR spectroscopy
Positionally dependent fractionation factors for the photolysis of isotopomers of N_2O in natural abundance have been determined by high resolution FTIR spectroscopy at three photolysis wavelengths. Fractionation factors show clear 15N position and photolysis wavelength dependence and are in qualitative agreement with theoretical models but are twice as large. The fractionation factors increase with photolysis wavelength from 193 to 211 nm, with the fractionation factors at 207.6 nm for ^(14)N^(15)N^916)O, ^(15)N^(14)N^(16)O and ^(14)N^(14)N^(18)O equal to −66.5±5‰,−27.1±6‰ and −49±10‰, respectively
Suite of simple metrics reveals common movement syndromes across vertebrate taxa
ecause empirical studies of animal movement are most-often site- and species-specific, we lack understanding of the level of consistency in movement patterns across diverse taxa, as well as a framework for quantitatively classifying movement patterns. We aim to address this gap by determining the extent to which statistical signatures of animal movement patterns recur across ecological systems. We assessed a suite of movement metrics derived from GPS trajectories of thirteen marine and terrestrial vertebrate species spanning three taxonomic classes, orders of magnitude in body size, and modes of movement (swimming, flying, walking). Using these metrics, we performed a principal components analysis and cluster analysis to determine if individuals organized into statistically distinct clusters. Finally, to identify and interpret commonalities within clusters, we compared them to computer-simulated idealized movement syndromes representing suites of correlated movement traits observed across taxa (migration, nomadism, territoriality, and central place foraging)
A Spectroscopic Binary at the M/L Transition
We report the discovery of a single-lined spectroscopic binary with an Ultra
Cool Dwarf (UCD) primary with a spectral type between M8 and L0.5. This system
was discovered during the course of an ongoing survey to monitor L dwarfs for
radial velocity variations and is the first known small separation (a<1 AU)
spectroscopic binary among dwarfs at the M/L transition. Based on
radial-velocity measurements with a typical precision of 300 m/s we estimate
the orbital parameters of this system to be P=246.73+/-0.49 d, a1
sin(i)=0.159+/-0.003 AU, M2 sin(i)=0.2062 (M1+M2)^(2/3)+/-0.0034 M_{\sun}.
Assuming a primary mass of M1=0.08M_{\sun} (based on spectral type), we
estimate the secondary minimum mass to be M2 sin(i)=0.054 M_{\sun}. With future
photometric, spectroscopic, and interferometric observations it may be possible
to determine the dynamical masses of both components directly, making this
system one of the best characterized UCD binaries known.Comment: 11 pages, 2 figures. Accepted for publication in ApJ Letter
Recommended from our members
Flow-induced dynamic surface tension effects at nanoscale
The aim of this study is to investigate flow-induced dynamic surface tension effects, similar to the well-known Marangoni phenomena, but solely generated by the nanoscale topography of the substrates. The flow-induced surface tension effects are examined on the basis of a sharp interface theory. It is demonstrated how nanoscale objects placed at the boundary of the flow domain result in the generation of substantial surface forces acting on the bulk flow
Nighttime chemistry at a high altitude site above Hong Kong
Nighttime reactions of nitrogen oxides influence ozone, volatile organic compounds, and aerosol and are thus important to the understanding of regional air quality. Despite large emissions and rapid recent growth of nitrogen oxide concentrations, there are few studies of nighttime chemistry in China. Here we present measurements of nighttime nitrogen oxides, NO3 and N2O5, from a coastal mountaintop site in Hong Kong adjacent to the megacities of the Pearl River Delta region. This is the first study of nighttime chemistry from a site within the residual layer in China. Key findings include the following. First, highly concentrated urban NOx outflow from the Pearl River Delta region was sampled infrequently at night, with N2O5 mixing ratios up to 8 ppbv (1 min average) or 12 ppbv (1 s average) in nighttime aged air masses. Second, the average N2O5 uptake coefficient was determined from a best fit to the available steady state lifetime data as γ(N2O5) = 0.014 ± 0.007. Although this determination is uncertain due to the difficulty of separating N2O5 losses from those of NO3, this value is in the range of previous residual layer determinations of N2O5 uptake coefficients in polluted air in North America. Third, there was a significant contribution of biogenic hydrocarbons to NO3 loss inferred from canister samples taken during daytime. Finally, daytime N2O5 mixing ratios were in accord with their predicted photochemical steady state. Heterogeneous uptake of N2O5 in fog is determined to be an important production mechanism for soluble nitrate, even during daytime. Key Points Large (up to 12 ppbv N2O5) but infrequent nocturnal NOx outflow from the Pearl River Delta Average N2O5 uptake coefficients 0.014 ± 0.007, in line with residual layer measurements in the U.S. Daytime N2O5 follows predicted steady state but rapidly produces soluble nitrate in fog.Department of Civil and Environmental Engineerin
Record-setting Cosmic-ray Intensities in 2009 and 2010
We report measurements of record-setting intensities of cosmic-ray nuclei from C to Fe, made with the Cosmic Ray Isotope Spectrometer carried on the Advanced Composition Explorer in orbit about the inner Sun-Earth Lagrangian point. In the energy interval from ~70 to ~450 MeV nucleon^(–1), near the peak in the near-Earth cosmic-ray spectrum, the measured intensities of major species from C to Fe were each 20%-26% greater in late 2009 than in the 1997-1998 minimum and previous solar minima of the space age (1957-1997). The elevated intensities reported here and also at neutron monitor energies were undoubtedly due to several unusual aspects of the solar cycle 23/24 minimum, including record-low interplanetary magnetic field (IMF) intensities, an extended period of reduced IMF turbulence, reduced solar-wind dynamic pressure, and extremely low solar activity during an extended solar minimum. The estimated parallel diffusion coefficient for cosmic-ray transport based on measured solar-wind properties was 44% greater in 2009 than in the 1997-1998 solar-minimum period. In addition, the weaker IMF should result in higher cosmic-ray drift velocities. Cosmic-ray intensity variations at 1 AU are found to lag IMF variations by 2-3 solar rotations, indicating that significant solar modulation occurs inside ~20 AU, consistent with earlier galactic cosmic-ray radial-gradient measurements. In 2010, the intensities suddenly decreased to 1997 levels following increases in solar activity and in the inclination of the heliospheric current sheet. We describe the conditions that gave cosmic rays greater access to the inner solar system and discuss some of their implications
Astrochemistry of Sub-Millimeter Sources in Orion: Studying the Variations of Molecular Tracers with Changing Physical Conditions
Cornerstone molecules (CO, H_2CO, CH_3OH, HCN, HNC, CN, CS, SO) were observed
toward seven sub-millimeter bright sources in the Orion molecular cloud in
order to quantify the range of conditions for which individual molecular line
tracers provide physical and chemical information. Five of the sources observed
were protostellar, ranging in energetics from 1 - 500L_sun, while the other two
sources were located at a shock front and within a photodissociation region
(PDR).
Statistical equilibrium calculations were used to deduce from the measured
line strengths the physical conditions within each source and the abundance of
each molecule. In all cases except the shock and the PDR, the abundance of CO
with respect to H_2 appears significantly below (factor of ten) the general
molecular cloud value of 10^-4. {Formaldehyde measurements were used to
estimate a mean temperature and density for the gas in each source. Evidence
was found for trends between the derived abundance of CO, H_2CO, CH_3OH, and CS
and the energetics of the source, with hotter sources having higher
abundances.} Determining whether this is due to a linear progression of
abundance with temperature or sharp jumps at particular temperatures will
require more detailed modeling. The observed methanol transitions require high
temperatures (T>50 K), and thus energetic sources, within all but one of the
observed protostellar sources. The same conclusion is obtained from
observations of the CS 7-6 transition. Analysis of the HCN and HNC 4-3
transitions provides further support for high densities n> 10^7 cm^-3 in all
the protostellar sources.Comment: 36 pages, 8 figures, Astronomy and Astrophysics in pres
Observations of nitryl chloride and modeling its source and effect on ozone in the planetary boundary layer of southern China
Nitryl chloride (ClNO2) plays potentially important roles in atmospheric chemistry, but its abundance and effect are not fully understood due to the small number of ambient observations of ClNO2 to date. In late autumn 2013, ClNO2 was measured with a chemical ionization mass spectrometer (CIMS) at a mountain top (957 m above sea level) in Hong Kong. During 12 nights with continuous CIMS data, elevated mixing ratios of ClNO2 (>400 parts per trillion by volume) or its precursor N2O5 (>1000 pptv) were observed on six nights, with the highest ever reported ClNO2 (4.7 ppbv, 1 min average) and N2O5 (7.7 ppbv, 1 min average) in one case. Backward particle dispersion calculations driven by winds simulated with a mesoscale meteorological model show that the ClNO2/N2O5-laden air at the high-elevation site was due to transport of urban/industrial pollution north of the site. The highest ClNO2/N2O5 case was observed in a later period of the night and was characterized with extensively processed air and with the presence of nonoceanic chloride. A chemical box model with detailed chlorine chemistry was used to assess the possible impact of the ClNO2 in the well-processed regional plume on next day ozone, as the air mass continued to downwind locations. The results show that the ClNO2 could enhance ozone by 5-16% at the ozone peak or 11-41% daytime ozone production in the following day. This study highlights varying importance of the ClNO2 chemistry in polluted environments and the need to consider this process in photochemical models for prediction of ground-level ozone and haze. Key Points First observation of ClNO2 in the planetary boundary layer of China Combined high-resolution meteorological and measurement-constrained chemical models in data analysis ClNO2 enhances daytime ozone peak by 5-16% in well-processed PRD air.Department of Civil and Environmental Engineerin
Radiation modeling in the Earth and Mars atmospheres using LRO/CRaTER with the EMMREM Module
Abstract We expand upon the efforts of Joyce et al. (2013), who computed the modulation potential at the Moon using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) spacecraft along with data products from the Earth-Moon-Mars Radiation Environment Module (EMMREM). Using the computed modulation potential, we calculate galactic cosmic ray (GCR) dose and dose equivalent rates in the Earth and Mars atmospheres for various altitudes over the course of the LRO mission. While we cannot validate these predictions by directly comparable measurement, we find that our results conform to expectations and are in good agreement with the nearest available measurements and therefore may be used as reasonable estimates for use in efforts in risk assessment in the planning of future space missions as well as in the study of GCRs. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other solar energetic particles measurements) is an online system designed to provide the scientific community with a comprehensive resource on the radiation environments of the inner heliosphere. The data products shown here will be incorporated into PREDICCS in order to further this effort and daily updates will be made available on the PREDICCS website (http://prediccs.sr.unh.edu). Key Points We model GCR dose and dose equivalent rates in Earth and Mars atmospheres Dose rates are in reasonable agreement with nearby measurements Data products will soon be made available on PREDICCS website
- …
