1,630 research outputs found
Controlling spatiotemporal dynamics with time-delay feedback
We suggest a spatially local feedback mechanism for stabilizing periodic
orbits in spatially extended systems. Our method, which is based on a
comparison between present and past states of the system, does not require the
external generation of an ideal reference state and can suppress both absolute
and convective instabilities. As an example, we analyze the complex
Ginzburg-Landau equation in one dimension, showing how the time-delay feedback
enlarges the stability domain for travelling waves.Comment: 4 pages REVTeX + postscript file with 3 figure
Studies supporting an upper-atmosphere chemical release program. Part I - Experimental studies on chemiluminescence. Part II - A model of releases leading to upper-atmospheric chemi-ion formation Final report, May 1965 - May 1966
Chemiluminescence of chemical compounds released in upper atmosphere and model of releases leading to upper atmospheric chemi-ionizatio
Stability domains for time-delay feedback control with latency
We generalize a known analytical method for determining the stability of
periodic orbits controlled by time-delay feedback methods when latencies
associated with the generation and injection of the feedback signal cannot be
ignored. We discuss the case of extended time-delay autosynchronization (ETDAS)
and show that nontrivial qualitative features of the domain of control observed
in experiments can be explained by taking into account the effects of both the
unstable eigenmode and a single stable eigenmode in the Floquet theory.Comment: 9 pages, 6 figures; Submitted to Physical Review
Controlling extended systems with spatially filtered, time-delayed feedback
We investigate a control technique for spatially extended systems combining
spatial filtering with a previously studied form of time-delay feedback. The
scheme is naturally suited to real-time control of optical systems. We apply
the control scheme to a model of a transversely extended semiconductor laser in
which a desirable, coherent traveling wave state exists, but is a member of a
nowhere stable family. Our scheme stabilizes this state, and directs the system
towards it from realistic, distant and noisy initial conditions. As confirmed
by numerical simulation, a linear stability analysis about the controlled state
accurately predicts when the scheme is successful, and illustrates some key
features of the control including the individual merit of, and interplay
between, the spatial and temporal degrees of freedom in the control.Comment: 9 pages REVTeX including 7 PostScript figures. To appear in Physical
Review
Unconventional Josephson Effect in Hybrid Superconductor-Topological Insulator Devices
We report on transport properties of Josephson junctions in hybrid
superconducting-topological insulator devices, which show two striking
departures from the common Josephson junction behavior: a characteristic energy
that scales inversely with the width of the junction, and a low characteristic
magnetic field for suppressing supercurrent. To explain these effects, we
propose a phenomenological model which expands on the existing theory for
topological insulator Josephson junctions
Torsional-flexural buckling of unevenly battened columns under eccentrical compressive loading
In this paper, an analytical model is developed to determine the torsional-flexural buckling load of a channel column braced by unevenly distributed batten plates. Solutions of the critical-buckling loads were derived for three boundary cases using the energy method in which the rotating angle between the adjacent battens was presented in the form of a piecewise cubic Hermite interpolation (PCHI) for unequally spaced battens. The validity of the PCHI method was numerically verified by the classic analytical approach for evenly battened
columns and a finite-element analysis for unevenly battened ones, respectively. Parameter studies were then performed to examine the effects of loading eccentricities on the torsional-flexural buckling capacity of both evenly and unevenly battened columns. Design parameters taken into account were the ratios of pure torsional buckling load to pure flexural–buckling load, the number and position of battens, and the ratio of the relative extent of the eccentricity. Numerical results were summarized into a series of relative curves indicating the combination of the buckling load and corresponding moments for various buckling ratios.National Natural Science Foundation of China (NSFC) under grant number (No.) 51175442 and Sichuan International Cooperation Research Project under grant No. 2014HH002
Liquid racism and the Danish Prophet Muhammad cartoons
This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 The Author.This article examines reactions to the October 2005 publication of the Prophet Muhammad cartoons in the Danish newspaper Jyllands-Posten. It does so by using the concept of ‘liquid racism’. While the controversy arose because it is considered blasphemous by many Muslims to create images of the Prophet Muhammad, the article argues that the meaning of the cartoons is multidimensional, that their analysis is significantly more complex than most commentators acknowledge, and that this complexity can best be addressed via the concept of liquid racism. The article examines the liquidity of the cartoons in relation to four readings. These see the cartoons as: (1) a criticism of Islamic fundamentalism; (2) blasphemous images; (3) Islamophobic and racist; and (4) satire and a defence of freedom of speech. Finally, the relationship between postmodernity and the rise of fundamentalism is discussed because the cartoons, reactions to them, and Islamic fundamentalism, all contain an important postmodern dimension.ESR
Introduction to topological superconductivity and Majorana fermions
This short review article provides a pedagogical introduction to the rapidly
growing research field of Majorana fermions in topological superconductors. We
first discuss in some details the simplest "toy model" in which Majoranas
appear, namely a one-dimensional tight-binding representation of a p-wave
superconductor, introduced more than ten years ago by Kitaev. We then give a
general introduction to the remarkable properties of Majorana fermions in
condensed matter systems, such as their intrinsically non-local nature and
exotic exchange statistics, and explain why these quasiparticles are suspected
to be especially well suited for low-decoherence quantum information
processing. We also discuss the experimentally promising (and perhaps already
successfully realized) possibility of creating topological superconductors
using semiconductors with strong spin-orbit coupling, proximity-coupled to
standard s-wave superconductors and exposed to a magnetic field. The goal is to
provide an introduction to the subject for experimentalists or theorists who
are new to the field, focusing on the aspects which are most important for
understanding the basic physics. The text should be accessible for readers with
a basic understanding of quantum mechanics and second quantization, and does
not require knowledge of quantum field theory or topological states of matter.Comment: 21 pages, 5 figure
- …
