1,952 research outputs found

    Concentration of empirical distribution functions with applications to non-i.i.d. models

    Full text link
    The concentration of empirical measures is studied for dependent data, whose joint distribution satisfies Poincar\'{e}-type or logarithmic Sobolev inequalities. The general concentration results are then applied to spectral empirical distribution functions associated with high-dimensional random matrices.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ254 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Convergence to Stable Laws in Relative Entropy

    Full text link
    Convergence to stable laws in relative entropy is established for sums of i.i.d. random variables

    Optimal Concentration of Information Content For Log-Concave Densities

    Full text link
    An elementary proof is provided of sharp bounds for the varentropy of random vectors with log-concave densities, as well as for deviations of the information content from its mean. These bounds significantly improve on the bounds obtained by Bobkov and Madiman ({\it Ann. Probab.}, 39(4):1528--1543, 2011).Comment: 15 pages. Changes in v2: Remark 2.5 (due to C. Saroglou) added with more general sufficient conditions for equality in Theorem 2.3. Also some minor corrections and added reference

    Kondo-Anderson Transitions

    Get PDF
    Dilute magnetic impurities in a disordered Fermi liquid are considered close to the Anderson metal-insulator transition (AMIT). Critical Power law correlations between electron wave functions at different energies in the vicinity of the AMIT result in the formation of pseudogaps of the local density of states. Magnetic impurities can remain unscreened at such sites. We determine the density of the resulting free magnetic moments in the zero temperature limit. While it is finite on the insulating side of the AMIT, it vanishes at the AMIT, and decays with a power law as function of the distance to the AMIT. Since the fluctuating spins of these free magnetic moments break the time reversal symmetry of the conduction electrons, we find a shift of the AMIT, and the appearance of a semimetal phase. The distribution function of the Kondo temperature TKT_{K} is derived at the AMIT, in the metallic phase and in the insulator phase. This allows us to find the quantum phase diagram in an external magnetic field BB and at finite temperature TT. We calculate the resulting magnetic susceptibility, the specific heat, and the spin relaxation rate as function of temperature. We find a phase diagram with finite temperature transitions between insulator, critical semimetal, and metal phases. These new types of phase transitions are caused by the interplay between Kondo screening and Anderson localization, with the latter being shifted by the appearance of the temperature-dependent spin-flip scattering rate. Accordingly, we name them Kondo-Anderson transitions (KATs).Comment: 18 pages, 9 figure

    Two remarks on generalized entropy power inequalities

    Full text link
    This note contributes to the understanding of generalized entropy power inequalities. Our main goal is to construct a counter-example regarding monotonicity and entropy comparison of weighted sums of independent identically distributed log-concave random variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.Comment: arXiv:1811.00345 is split into 2 papers, with this being on

    Strong suppression of weak (anti)localization in graphene

    Get PDF
    Low-field magnetoresistance is ubiquitous in low-dimensional metallic systems with high resistivity and well understood as arising due to quantum interference on self-intersecting diffusive trajectories. We have found that in graphene this weak-localization magnetoresistance is strongly suppressed and, in some cases, completely absent. This unexpected observation is attributed to mesoscopic corrugations of graphene sheets which cause a dephasing effect similar to that of a random magnetic field.Comment: improved presentation of the theory part after referees comments; important experimental info added (see "note added in proof"
    corecore