1,186 research outputs found
Trends in the magnetic properties of Fe, Co and Ni clusters and monolayers on Ir(111), Pt(111) and Au(111)
We present a detailed theoretical investigation on the magnetic properties of
small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and
Au(111). For this a fully relativistic {\em ab-initio} scheme based on density
functional theory has been used. We analyse the element, size and geometry
specific variations of the atomic magnetic moments and their mutual exchange
interactions as well as the magnetic anisotropy energy in these systems. Our
results show that the atomic spin magnetic moments in the Fe and Co clusters
decrease almost linearly with coordination on all three substrates, while the
corresponding orbital magnetic moments appear to be much more sensitive to the
local atomic environment. The isotropic exchange interaction among the cluster
atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe
and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in
general one or two orders of magnitude smaller when compared to the isotropic
one. For the magnetic properties of Ni clusters the magnetic properties can
show quite a different behaviour and we find in this case a strong tendency
towards noncollinear magnetism
Transient benthic foraminiferal assemblage fluctuations during early Eocene hyperthermals at DSDP site 401, Bay of Biscay, North East Atlantic
Differential response at the seafloor during Palaeocene and Eocene ocean warming events at Walvis Ridge, Atlantic Ocean (ODP Site 1262)
The Latest Danian Event (LDE, c. 62.1 Ma) is an early Palaeogene hyperthermal or transient (<200 ka) ocean warming event. We present the first deep-sea benthic foraminiferal faunal record to study deep-sea biotic changes together with new benthic (Nuttallides truempyi) stable isotope data from Walvis Ridge Site 1262 (Atlantic Ocean) to evaluate whether the LDE was controlled by similar processes as the minor early Eocene hyperthermals. The spacing of the double negative δ13C and δ18O excursion and the slope of the δ18O–δ13C regression are comparable, strongly suggesting a similar orbital control and pacing of eccentricity maxima as well as a rather homogeneous carbon pool. However, in contrast to early Eocene hyperthermals, the LDE exhibits a remarkable stability of the benthic foraminiferal fauna. This lack of benthic response could be related to the absence of threshold-related circulation changes or better pre-adaptation to elevated deep-sea temperatures, as the LDE was superimposed on a cooling trend, in contrast to early Eocene warming
Stable isotope paleoecology (d<sup>13</sup>C and d<sup>18</sup>O) of early Eocene <i>Zeauvigerina aegyptiaca</i> from the North Atlantic (DSDP Site 401)
Within the expanded and clay-enriched interval following the Paleocene-Eocene Thermal Maximum (PETM; ~55.8 Ma) at Deep Sea Drilling Project (DSDP) Site 401 (eastern North Atlantic), high abundances of well-preserved biserial planktic foraminifera such as Zeauvigerina aegyptiaca and Chiloguembelina spp. occur. The paleoecological preferences of these taxa are only poorly constrained, largely because existing records are patchy in time and space. The thin-walled Z. aegyptiaca is usually rather small (13C and d18O) study of well-preserved specimens of Z. aegyptiaca and several planktic foraminiferal species (Morozovella subbotinae, Subbotina patagonica, Chiloguembelina wilcoxensis) enabled us to determine the preferred depth habitat and mode of life for Z. aegyptiaca. Oxygen isotope values of Z. aegyptiaca range from -1.57‰ to -2.07‰ and overlap with those of M. subbotinae indicating that their habitat is (1) definitely planktic, which has been questioned by some earlier isotopic studies, and (2) probably within the lower surface mixed layer. Carbon isotope ratios range from 0.99‰ to 1.34‰ and are distinctly lower than values for non-biserial planktic species. This may indicate isotopic disequilibrium between ambient seawater and the calcareous tests of Z. aegyptiaca, which we relate to vital effects and to its opportunistic behavior. The observed isotopic signal of Z. aegyptiaca relative to the other planktic foraminiferal species is highly similar to many other microperforate bi- and triserial planktic genera that have appeared through geological time such as Heterohelix, Guembelitria, Chiloguembelina, Streptochilus and Gallitellia and we suggest that Z. aegyptiaca shares a similar ecology and habitat. Thus, in order for the opportunistic Z. aegyptiaca to bloom during the aftermath of the PETM, we assume that at that time, the surface waters at Site 401 were influenced by increased terrestrial run-off and nutrient availability
Joint distribution of the first and second eigenvalues at the soft edge of unitary ensembles
The density function for the joint distribution of the first and second
eigenvalues at the soft edge of unitary ensembles is found in terms of a
Painlev\'e II transcendent and its associated isomonodromic system. As a
corollary, the density function for the spacing between these two eigenvalues
is similarly characterized.The particular solution of Painlev\'e II that arises
is a double shifted B\"acklund transformation of the Hasting-McLeod solution,
which applies in the case of the distribution of the largest eigenvalue at the
soft edge. Our deductions are made by employing the hard-to-soft edge
transitions to existing results for the joint distribution of the first and
second eigenvalue at the hard edge \cite{FW_2007}. In addition recursions under
of quantities specifying the latter are obtained. A Fredholm
determinant type characterisation is used to provide accurate numerics for the
distribution of the spacing between the two largest eigenvalues.Comment: 26 pages, 1 Figure, 2 Table
Finite-Element Discretization of Static Hamilton-Jacobi Equations Based on a Local Variational Principle
We propose a linear finite-element discretization of Dirichlet problems for
static Hamilton-Jacobi equations on unstructured triangulations. The
discretization is based on simplified localized Dirichlet problems that are
solved by a local variational principle. It generalizes several approaches
known in the literature and allows for a simple and transparent convergence
theory. In this paper the resulting system of nonlinear equations is solved by
an adaptive Gauss-Seidel iteration that is easily implemented and quite
effective as a couple of numerical experiments show.Comment: 19 page
- …
