1,567 research outputs found
Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration
Spatiotemporal expression patterns of six members of the Eph gene family (EphA4, EphA3, EphB2, ephrin-B1, ephrin-A2, and ephrin-A5) were characterized immunocytochemically at various stages of chick cerebellar development. EphA4 expression is observed in the cerebellar anlage as early as embryonic day 5 (E5) and continues in the posthatch cerebellum. During the early period of cerebellar development (E3-E8), complementarity is observed between EphA4 and ephrin-A5 expression within the cerebellar-isthmal region. By E8, differential expression of EphA4 in parasagittal Purkinje cell bands is evident, and the expression remains banded in the posthatch cerebellum. Banded expression of the ephrin-A5 ligand complements EphA4 expression during the middle period (E9-E15). During this period, ephrin-A2 and EphA3 are coexpressed in a banded pattern and with variable correlation to EphA4. Variability in the banding expression is observed for EphA4, EphA3, ephrin-A5, and ephrin-A2 across different lobes, and graded complementarity in the expression pattern of EphA3 and ephrin-A5 is observed in the external granular layer between the posterior and anterior lobes. Analysis of Purkinje cell birth date in correlation with Eph-ephrin expression during the middle period reveals that early-born cells express EphA4, whereas late-born cells express ephrin-A5. Finally, EphA4 expression domains are respected by migrating granule cell ribbons, which express both ephrin-B1 and EphB2. These expression patterns suggest multiple roles for the Eph-ephrin system in cerebellar development, including demarcation/enforcement of boundaries of the cerebellar anlage, formation/maintenance of Purkinje cell compartments, and restriction of the early phase of granule cell migration to ribbons
The development and evaluation of exercises for meaningful responses in reading in grade two
Research chapter for this study will be found in Ash, Dorothea: "Development and evaluation of silent reading exercises in grade one"
Thesis (M.A.)--Boston Universit
SPT 0538–50: Physical Conditions in the Interstellar Medium of a Strongly Lensed Dusty Star-forming Galaxy at z = 2.8
We present observations of SPT-S J053816–5030.8, a gravitationally lensed dusty star-forming galaxy (DSFG) at z = 2.7817 that was first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538–50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538–50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, the Very Large Telescope, ATCA, APEX, and the Submillimeter Array. We use high-resolution imaging from the Hubble Space Telescope to de-blend SPT 0538–50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 ± 4), we derive the intrinsic properties of SPT 0538–50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and—using molecular line fluxes—the excitation conditions within the interstellar medium. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538–50 similar to local starburst galaxies and unlike that seen in some other DSFGs at this epoch
ALMA observations of atomic carbon in z~4 dusty star-forming galaxies
We present ALMA [CI]() (rest frequency 492 GHz) observations for a
sample of 13 strongly-lensed dusty star-forming galaxies originally discovered
at 1.4mm in a blank-field survey by the South Pole Telescope. We compare these
new data with available [CI] observations from the literature, allowing a study
of the ISM properties of extreme dusty star-forming galaxies spanning
a redshift range . Using the [CI] line as a tracer of the molecular
ISM, we find a mean molecular gas mass for SPT-DSFGs of
M. This is in tension with gas masses derived via low- CO
and dust masses; bringing the estimates into accordance requires either (a) an
elevated CO-to-H conversion factor for our sample of and a gas-to-dust ratio , or (b) an high carbon abundance . Using observations of a range of additional atomic
and molecular lines (including [CI], [CII], and multiple transitions of CO), we
use a modern Photodissociation Region code (3D-PDR) to assess the physical
conditions (including the density, UV radiation field strength, and gas
temperature) within the ISM of the DSFGs in our sample. We find that the ISM
within our DSFGs is characterised by dense gas permeated by strong UV fields.
We note that previous efforts to characterise PDR regions in DSFGs may have
significantly underestimated the density of the ISM. Combined, our analysis
suggests that the ISM of extreme dusty starbursts at high redshift consists of
dense, carbon-rich gas not directly comparable to the ISM of starbursts in the
local Universe.Comment: 21 pages, 12 figures. Accepted for publication in MNRA
ALMA constraints on the faint millimetre source number counts and their contribution to the cosmic infrared background
We have analysed 18 ALMA continuum maps in Bands 6 and 7, with rms down to
7.8Jy, to derive differential number counts down to 60Jy and
100Jy at 1.3 mm and 1.1 mm, respectively. The area
covered by the combined fields is at 1.1mm and at 1.3mm. We improved the source extraction method by
requiring that the dimension of the detected sources be consistent with the
beam size. This method enabled us to remove spurious detections that have
plagued the purity of the catalogues in previous studies. We detected 50 faint
sources with S/N3.5 down to 60Jy, hence improving the statistics by a
factor of four relative to previous studies. The inferred differential number
counts are at a 1.1 mm flux Jy, and at a 1.3
mm flux Jy. At the faintest flux limits,
i.e. 30Jy and 40Jy, we obtain upper limits on the differential number
counts of and , respectively. Our results provide a new
lower limit to CIB intensity of 17.2 at 1.1mm and of
12.9 at 1.3mm. Moreover, the flattening of the integrated
number counts at faint fluxes strongly suggests that we are probably close to
the CIB intensity. Our data imply that galaxies with SFR
certainly contribute less than 50% to the CIB while more than 50% of the CIB
must be produced by galaxies with . The differential
number counts are in nice agreement with recent semi-analytical models of
galaxy formation even as low as our faint fluxes. Consequently, this supports
the galaxy evolutionary scenarios and assumptions made in these models.Comment: 11 pages, 9 figures, A&A accepte
SPT0346-52: Negligible AGN Activity in a Compact, Hyper-starburst Galaxy at z = 5.7
We present Chandra ACIS-S and ATCA radio continuum observations of the
strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter
SPT0346-52) at = 5.656. This galaxy has also been observed with ALMA, HST,
Spitzer, Herschel, APEX, and the VLT. Previous observations indicate that if
the infrared (IR) emission is driven by star formation, then the inferred
lensing-corrected star formation rate ( 4500 M_{\sun} yr) and
star formation rate surface density ( 2000 M_{\sun}
{yr^{-1}} {kpc^{-2}}) are both exceptionally high. It remained unclear from
the previous data, however, whether a central active galactic nucleus (AGN)
contributes appreciably to the IR luminosity. The {\it Chandra} upper limit
shows that SPT0346-52 is consistent with being star-formation dominated in the
X-ray, and any AGN contribution to the IR emission is negligible. The ATCA
radio continuum upper limits are also consistent with the FIR-to-radio
correlation for star-forming galaxies with no indication of an additional AGN
contribution. The observed prodigious intrinsic IR luminosity of (3.6
0.3) 10 L_{\sun} originates almost solely from vigorous star
formation activity. With an intrinsic source size of 0.61 0.03 kpc,
SPT0346-52 is confirmed to have one of the highest of any known
galaxy. This high , which approaches the Eddington limit for a
radiation pressure supported starburst, may be explained by a combination of
very high star formation efficiency and gas fraction.Comment: 8 pages, 6 figures, accepted for publication in Ap
ALLSMOG: an APEX Low-redshift Legacy Survey for MOlecular Gas. I - molecular gas scaling relations, and the effect of the CO/H2 conversion factor
We present ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas.
ALLSMOG is a survey designed to observe the CO(2-1) emission line with the APEX
telescope, in a sample of local galaxies (0.01 < z < 0.03), with stellar masses
in the range 8.5 < log(M*/Msun) < 10. This paper is a data release and initial
analysis of the first two semesters of observations, consisting of 42 galaxies
observed in CO(2-1). By combining these new CO(2-1) emission line data with
archival HI data and SDSS optical spectroscopy, we compile a sample of low-mass
galaxies with well defined molecular gas masses, atomic gas masses, and
gas-phase metallicities. We explore scaling relations of gas fraction and gas
consumption timescale, and test the extent to which our findings are dependent
on a varying CO/H2 conversion factor. We find an increase in the H2/HI mass
ratio with stellar mass which closely matches semi-analytic predictions. We
find a mean molecular gas fraction for ALLSMOG galaxies of MH2/M* = (0.09 -
0.13), which decreases with stellar mass. We measure a mean molecular gas
consumption timescale for ALLSMOG galaxies of 0.4 - 0.7 Gyr. We also confirm
the non-universality of the molecular gas consumption timescale, which varies
(with stellar mass) from ~100 Myr to ~2 Gyr. Importantly, we find that the
trends in the H2/HI mass ratio, gas fraction, and the non-universal molecular
gas consumption timescale are all robust to a range of recent
metallicity-dependent CO/H2 conversion factors.Comment: 25 pages, 15 figures. Accepted for publication in MNRA
- …
