1,567 research outputs found

    Eph receptors and ephrins in the developing chick cerebellum: relationship to sagittal patterning and granule cell migration

    Get PDF
    Spatiotemporal expression patterns of six members of the Eph gene family (EphA4, EphA3, EphB2, ephrin-B1, ephrin-A2, and ephrin-A5) were characterized immunocytochemically at various stages of chick cerebellar development. EphA4 expression is observed in the cerebellar anlage as early as embryonic day 5 (E5) and continues in the posthatch cerebellum. During the early period of cerebellar development (E3-E8), complementarity is observed between EphA4 and ephrin-A5 expression within the cerebellar-isthmal region. By E8, differential expression of EphA4 in parasagittal Purkinje cell bands is evident, and the expression remains banded in the posthatch cerebellum. Banded expression of the ephrin-A5 ligand complements EphA4 expression during the middle period (E9-E15). During this period, ephrin-A2 and EphA3 are coexpressed in a banded pattern and with variable correlation to EphA4. Variability in the banding expression is observed for EphA4, EphA3, ephrin-A5, and ephrin-A2 across different lobes, and graded complementarity in the expression pattern of EphA3 and ephrin-A5 is observed in the external granular layer between the posterior and anterior lobes. Analysis of Purkinje cell birth date in correlation with Eph-ephrin expression during the middle period reveals that early-born cells express EphA4, whereas late-born cells express ephrin-A5. Finally, EphA4 expression domains are respected by migrating granule cell ribbons, which express both ephrin-B1 and EphB2. These expression patterns suggest multiple roles for the Eph-ephrin system in cerebellar development, including demarcation/enforcement of boundaries of the cerebellar anlage, formation/maintenance of Purkinje cell compartments, and restriction of the early phase of granule cell migration to ribbons

    The development and evaluation of exercises for meaningful responses in reading in grade two

    Full text link
    Research chapter for this study will be found in Ash, Dorothea: "Development and evaluation of silent reading exercises in grade one" Thesis (M.A.)--Boston Universit

    SPT 0538–50: Physical Conditions in the Interstellar Medium of a Strongly Lensed Dusty Star-forming Galaxy at z = 2.8

    Get PDF
    We present observations of SPT-S J053816–5030.8, a gravitationally lensed dusty star-forming galaxy (DSFG) at z = 2.7817 that was first discovered at millimeter wavelengths by the South Pole Telescope. SPT 0538–50 is typical of the brightest sources found by wide-field millimeter-wavelength surveys, being lensed by an intervening galaxy at moderate redshift (in this instance, at z = 0.441). We present a wide array of multi-wavelength spectroscopic and photometric data on SPT 0538–50, including data from ALMA, Herschel PACS and SPIRE, Hubble, Spitzer, the Very Large Telescope, ATCA, APEX, and the Submillimeter Array. We use high-resolution imaging from the Hubble Space Telescope to de-blend SPT 0538–50, separating DSFG emission from that of the foreground lens. Combined with a source model derived from ALMA imaging (which suggests a magnification factor of 21 ± 4), we derive the intrinsic properties of SPT 0538–50, including the stellar mass, far-IR luminosity, star formation rate, molecular gas mass, and—using molecular line fluxes—the excitation conditions within the interstellar medium. The derived physical properties argue that we are witnessing compact, merger-driven star formation in SPT 0538–50 similar to local starburst galaxies and unlike that seen in some other DSFGs at this epoch

    ALMA observations of atomic carbon in z~4 dusty star-forming galaxies

    Get PDF
    We present ALMA [CI](101-0) (rest frequency 492 GHz) observations for a sample of 13 strongly-lensed dusty star-forming galaxies originally discovered at 1.4mm in a blank-field survey by the South Pole Telescope. We compare these new data with available [CI] observations from the literature, allowing a study of the ISM properties of 30\sim 30 extreme dusty star-forming galaxies spanning a redshift range 2<z<52 < z < 5. Using the [CI] line as a tracer of the molecular ISM, we find a mean molecular gas mass for SPT-DSFGs of 6.6×10106.6 \times 10^{10} M_{\odot}. This is in tension with gas masses derived via low-JJ 12^{12}CO and dust masses; bringing the estimates into accordance requires either (a) an elevated CO-to-H2_2 conversion factor for our sample of αCO2.5\alpha_{\rm CO} \sim 2.5 and a gas-to-dust ratio 200\sim200, or (b) an high carbon abundance XCI7×105X_{\rm CI} \sim 7\times10^{-5}. Using observations of a range of additional atomic and molecular lines (including [CI], [CII], and multiple transitions of CO), we use a modern Photodissociation Region code (3D-PDR) to assess the physical conditions (including the density, UV radiation field strength, and gas temperature) within the ISM of the DSFGs in our sample. We find that the ISM within our DSFGs is characterised by dense gas permeated by strong UV fields. We note that previous efforts to characterise PDR regions in DSFGs may have significantly underestimated the density of the ISM. Combined, our analysis suggests that the ISM of extreme dusty starbursts at high redshift consists of dense, carbon-rich gas not directly comparable to the ISM of starbursts in the local Universe.Comment: 21 pages, 12 figures. Accepted for publication in MNRA

    ALMA constraints on the faint millimetre source number counts and their contribution to the cosmic infrared background

    Get PDF
    We have analysed 18 ALMA continuum maps in Bands 6 and 7, with rms down to 7.8μ\muJy, to derive differential number counts down to 60μ\muJy and 100μ\muJy at λ=\lambda=1.3 mm and λ=\lambda=1.1 mm, respectively. The area covered by the combined fields is 9.5×104deg2\rm 9.5\times10^{-4}deg^2 at 1.1mm and 6.6×104deg2\rm 6.6\times10^{-4}deg^{2} at 1.3mm. We improved the source extraction method by requiring that the dimension of the detected sources be consistent with the beam size. This method enabled us to remove spurious detections that have plagued the purity of the catalogues in previous studies. We detected 50 faint sources with S/N>>3.5 down to 60μ\muJy, hence improving the statistics by a factor of four relative to previous studies. The inferred differential number counts are dN/d(Log10S)=1×105 deg2\rm dN/d(Log_{10}S)=1\times10^5~deg^2 at a 1.1 mm flux Sλ=1.1 mm=130 μS_{\lambda = 1.1~mm} = 130~\muJy, and dN/d(Log10S)=1.1×105 deg2\rm dN/d(Log_{10}S)=1.1\times10^5~deg^2 at a 1.3 mm flux Sλ=1.3 mm=60 μ\rm S_{\lambda = 1.3~mm} = 60~\muJy. At the faintest flux limits, i.e. 30μ\muJy and 40μ\muJy, we obtain upper limits on the differential number counts of dN/d(Log10S)<7×105 deg2\rm dN/d(Log_{10}S) < 7\times10^5~deg^2 and dN/d(Log10S)<3×105 deg2\rm dN/d(Log_{10}S)<3\times10^5~deg^2, respectively. Our results provide a new lower limit to CIB intensity of 17.2Jy deg2{\rm Jy\ deg^{-2}} at 1.1mm and of 12.9Jy deg2{\rm Jy\ deg^{-2}} at 1.3mm. Moreover, the flattening of the integrated number counts at faint fluxes strongly suggests that we are probably close to the CIB intensity. Our data imply that galaxies with SFR<40 M/yr<40~M_{\odot}/yr certainly contribute less than 50% to the CIB while more than 50% of the CIB must be produced by galaxies with SFR>40 M/yr\rm SFR>40~M_{\odot}/yr. The differential number counts are in nice agreement with recent semi-analytical models of galaxy formation even as low as our faint fluxes. Consequently, this supports the galaxy evolutionary scenarios and assumptions made in these models.Comment: 11 pages, 9 figures, A&A accepte

    SPT0346-52: Negligible AGN Activity in a Compact, Hyper-starburst Galaxy at z = 5.7

    Get PDF
    We present Chandra ACIS-S and ATCA radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at zz = 5.656. This galaxy has also been observed with ALMA, HST, Spitzer, Herschel, APEX, and the VLT. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (\sim 4500 M_{\sun} yr1^{-1}) and star formation rate surface density ΣSFR\Sigma_{\rm SFR} (\sim 2000 M_{\sun} {yr^{-1}} {kpc^{-2}}) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The {\it Chandra} upper limit shows that SPT0346-52 is consistent with being star-formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ±\pm 0.3) ×\times 1013^{13} L_{\sun} originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ±\pm 0.03 kpc, SPT0346-52 is confirmed to have one of the highest ΣSFR\Sigma_{SFR} of any known galaxy. This high ΣSFR\Sigma_{SFR}, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.Comment: 8 pages, 6 figures, accepted for publication in Ap

    ALLSMOG: an APEX Low-redshift Legacy Survey for MOlecular Gas. I - molecular gas scaling relations, and the effect of the CO/H2 conversion factor

    Full text link
    We present ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas. ALLSMOG is a survey designed to observe the CO(2-1) emission line with the APEX telescope, in a sample of local galaxies (0.01 < z < 0.03), with stellar masses in the range 8.5 < log(M*/Msun) < 10. This paper is a data release and initial analysis of the first two semesters of observations, consisting of 42 galaxies observed in CO(2-1). By combining these new CO(2-1) emission line data with archival HI data and SDSS optical spectroscopy, we compile a sample of low-mass galaxies with well defined molecular gas masses, atomic gas masses, and gas-phase metallicities. We explore scaling relations of gas fraction and gas consumption timescale, and test the extent to which our findings are dependent on a varying CO/H2 conversion factor. We find an increase in the H2/HI mass ratio with stellar mass which closely matches semi-analytic predictions. We find a mean molecular gas fraction for ALLSMOG galaxies of MH2/M* = (0.09 - 0.13), which decreases with stellar mass. We measure a mean molecular gas consumption timescale for ALLSMOG galaxies of 0.4 - 0.7 Gyr. We also confirm the non-universality of the molecular gas consumption timescale, which varies (with stellar mass) from ~100 Myr to ~2 Gyr. Importantly, we find that the trends in the H2/HI mass ratio, gas fraction, and the non-universal molecular gas consumption timescale are all robust to a range of recent metallicity-dependent CO/H2 conversion factors.Comment: 25 pages, 15 figures. Accepted for publication in MNRA
    corecore