18,904 research outputs found

    Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems

    Get PDF
    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS

    A new, large-scale map of interstellar reddening derived from HI emission

    Get PDF
    We present a new map of interstellar reddening, covering the 39\% of the sky with low {\rm HI} column densities (NHI<4×1020cm2N_{\rm HI} < 4\times10^{20}\,\rm cm^{-2} or E(BV)45mmagE(B-V)\approx 45\rm\, mmag) at 16.116\overset{'}{.}1 resolution, based on all-sky observations of Galactic HI emission by the HI4PI Survey. In this low column density regime, we derive a characteristic value of NHI/E(BV)=8.8×1021cm2mag1N_{\rm HI}/E(B-V) = 8.8\times10^{21}\, \rm\, cm^{2}\, mag^{-1} for gas with vLSR<90kms1|v_{\rm LSR}| < 90\,\rm km\, s^{-1} and find no significant reddening associated with gas at higher velocities. We compare our HI-based reddening map with the Schlegel, Finkbeiner, and Davis (1998, SFD) reddening map and find them consistent to within a scatter of 5mmag\simeq 5\,\rm mmag. Further, the differences between our map and the SFD map are in excellent agreement with the low resolution (4.54\overset{\circ}{.}5) corrections to the SFD map derived by Peek and Graves (2010) based on observed reddening toward passive galaxies. We therefore argue that our HI-based map provides the most accurate interstellar reddening estimates in the low column density regime to date. Our reddening map is made publicly available (http://dx.doi.org/10.7910/DVN/AFJNWJ).Comment: Re-submitted to ApJ. The reddening map is available at http://dx.doi.org/10.7910/DVN/AFJNW

    Signals for Low Scale Gravity in the Process γγZZ\gamma \gamma \to ZZ

    Full text link
    We investigate the sensitivity of future photon-photon colliders to low scale gravity scenarios via the process γγZZ\gamma\gamma \to ZZ where the Kaluza-Klein boson exchange contributes only when the initial state photons have opposite helicity. We contrast this with the situation for the process γγγγ\gamma \gamma \to \gamma \gamma where the tt and uu channel also contribute. We include the one-loop Standard Model background whose interference with the graviton exchange determines the experimental reach in measuring any deviation from the Standard Model expectations and explore how polarization can be exploited to enhance the signal over background. We find that a 1 TeV linear collider has an experimental reach to mass scale of about 4 TeV in this channel.Comment: 20 pages, 8 figure

    Intelligent monitoring and diagnosis systems for the Space Station Freedom ECLSS

    Get PDF
    Specific activities in NASA's environmental control and life support system (ECLSS) advanced automation project that is designed to minimize the crew and ground manpower needed for operations are discussed. Various analyses and the development of intelligent software for the initial and evolutionary Space Station Freedom (SSF) ECLSS are described. The following are also discussed: (1) intelligent monitoring and diagnostics applications under development for the ECLSS domain; (2) integration into the MSFC ECLSS hardware testbed; and (3) an evolutionary path from the baseline ECLSS automation to the more advanced ECLSS automation processes
    corecore