207 research outputs found

    On the complexity of resource-bounded logics

    Get PDF
    We revisit decidability results for resource-bounded logics and use decision problems on vector addition systems with states (VASS) in order to establish complexity characterisations of (decidable) model checking problems. We show that the model checking problem for the logic RB+-ATL is 2EXPTIME-complete by using recent results on alternating VASS (and in EXPTIME when the number of resources is bounded). Moreover, we establish that the model checking problem for RBTL is EXPSPACE-complete. The problem is decidable and of the same complexity for RBTL*, proving a new decidability result as a by-product of the approach. When the number of resources is bounded, the problem is in PSPACE. We also establish that the model checking problem for RB+-ATL*, the extension of RB+-ATL with arbitrary path formulae, is decidable by a reduction to parity games for single-sided VASS (a variant of alternating VASS). Furthermore, we are able to synthesise values for resource parameters. Hence, the paper establishes formal correspondences between model checking problems for resource bounded logics advocated in the AI literature and decision problems on alternating VASS, paving the way for more applications and cross-fertilizations

    End-to-End Eye Movement Detection Using Convolutional Neural Networks

    Get PDF
    Common computational methods for automated eye movement detection - i.e. the task of detecting different types of eye movement in a continuous stream of gaze data - are limited in that they either involve thresholding on hand-crafted signal features, require individual detectors each only detecting a single movement, or require pre-segmented data. We propose a novel approach for eye movement detection that only involves learning a single detector end-to-end, i.e. directly from the continuous gaze data stream and simultaneously for different eye movements without any manual feature crafting or segmentation. Our method is based on convolutional neural networks (CNN) that recently demonstrated superior performance in a variety of tasks in computer vision, signal processing, and machine learning. We further introduce a novel multi-participant dataset that contains scripted and free-viewing sequences of ground-truth annotated saccades, fixations, and smooth pursuits. We show that our CNN-based method outperforms state-of-the-art baselines by a large margin on this challenging dataset, thereby underlining the significant potential of this approach for holistic, robust, and accurate eye movement protocol analysis

    Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography

    Get PDF
    The manuscript proposes and evaluates a real-time algorithm for estimating eye gaze angle based solely on single-channel electrooculography (EOG), which can be obtained directly from the ear canal using conductive ear moulds. In contrast to conventional high-pass filtering, we used an algorithm that calculates absolute eye gaze angle via statistical analysis of detected saccades. The estimated eye positions of the new algorithm were still noisy. However, the performance in terms of Pearson product-moment correlation coefficients was significantly better than the conventional approach in some instances. The results suggest that in-ear EOG signals captured with conductive ear moulds could serve as a basis for lightweight and portable horizontal eye gaze angle estimation suitable for a broad range of applications. For instance, for hearing aids to steer the directivity of microphones in the direction of the user’s eye gaze

    On the complexity of resource-bounded logics

    Get PDF
    We revisit decidability results for resource-bounded logics and use decision problems for vector addition systems with states (VASS) to characterise the complexity of (decidable) model-checking problems. We show that the model-checking problem for the logic RB+-ATL is 2EXPTIME-complete by using recent results on alternating VASS. In addition, we establish that the model-checking problem for RBTL is decidable and has the same complexity as for RBTL* (the extension of RBTL with arbitrary path formulae), namely EXPSPACE-complete, proving a new decidability result as a by-product of the approach. Finally, we establish that the model-checking problem for RB+-ATL* is decidable by a reduction to parity games, and show how to synthesise values for resource parameters

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    A serious games platform for cognitive rehabilitation with preliminary evaluation

    Get PDF
    In recent years Serious Games have evolved substantially, solving problems in diverse areas. In particular, in Cognitive Rehabilitation, Serious Games assume a relevant role. Traditional cognitive therapies are often considered repetitive and discouraging for patients and Serious Games can be used to create more dynamic rehabilitation processes, holding patients' attention throughout the process and motivating them during their road to recovery. This paper reviews Serious Games and user interfaces in rehabilitation area and details a Serious Games platform for Cognitive Rehabilitation that includes a set of features such as: natural and multimodal user interfaces and social features (competition, collaboration, and handicapping) which can contribute to augment the motivation of patients during the rehabilitation process. The web platform was tested with healthy subjects. Results of this preliminary evaluation show the motivation and the interest of the participants by playing the games.- This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia in the scope of the projects: PEst-UID/CEC/00319/2015 and PEst-UID/CEC/00027/2015. The authors would like to thank also all the volunteers that participated in the study

    Competition reaction-based prediction of polyamines' stepwise protonation constants: a case study involving 1,4,7,10-tetraazadecane (2,2,2-tet)

    Get PDF
    Theoretical prediction of four stepwise protonation constants of 1,4,7,10-tetraazadecane (2,2,2- tet) in correct order and with the smallest (largest) deviation of about 0.1 (–0.8) log unit from experimental values was achieved by an explicit application of a competition reaction (CRn) methodology in discrete-continuum solvation model involving four explicit water molecules. This methodology performs best when (i) tested (L(1)) and reference (L(2)) molecules are structurally similar, (ii) lowest energy conformers (LECs, selected from all possible tautomers) are used and (iii) a CRn, which assures a balanced charge distribution between reactants and products, Hn–1L(1) + HnL(2) = HnL(1) + Hn–1L(2), is implemented. A 5-step EEBGB-protocol was developed to effectively and in shortest time possible select LECs (E, B and G stands for electronic-energy-, Boltzmann-distribution- and Gibbs-free-energy-based stepwise selection of conformers). The EEBGB-protocol (i) reduced (by 94%) the number of conformers subjected to the frequency calculations (to obtain G-values) from 420 MM-selected to 25 used to compute four protonation constants and (ii) is of general-purpose as it is applicable to any flexible and poly-charged molecules. Moreover, in search for LECs, a rapid pre-screening protocol was developed and tested; it was found efficient for the purpose of this study. Additional research protocols, aimed at even better prediction of protonation constants, are also suggested.This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Numbers 87777) and the University of Pretoria.http://link.springer.com/journal/102672017-05-31hb2016Chemistr

    Post-feeding activity of Lucilia sericata (Diptera: Calliphoridae) on common domestic indoor surfaces and its effect on development.

    Get PDF
    Developmental data of forensically important blowflies used by entomologists to estimate minimum post mortem interval (mPMI) are established under controlled laboratory conditions for various temperature ranges throughout the stages of egg, 1st-3rd instar, puparia, and adult fly emergence. However, environmental conditions may influence the patterns of development and behaviour of blowflies, potentially impacting on these established development rates. Previous studies investigating indoor colonisation have focused on the delay to oviposition, with behaviour during the post-feeding phase in this setting often overlooked. The environment in which third instar larvae disperse when searching for a pupariation site may vary drastically at both outdoor and indoor scenarios, influencing the activity and distance travelled during this phase and possibly affecting developmental rates. This study investigated the effect of eight common domestic indoor surfaces on dispersal time, distance travelled, and behaviour of post-feeding Lucilia sericata as well as any resulting variation in development. It was found that pupariation and puparia length within a pupariation medium of sawdust (often used in laboratory settings) produced comparable results with that of carpeted environments (those deemed to be 'enclosed'). Non-carpeted environments (those which were 'exposed') produced a delay to pupariation likely due to increased activity and energy expenditure in searching for pupariation sites which enabled burial. In addition, the observed speed of travel during dispersal was seen via time lapse photography to be greater within 'exposed' conditions. Larvae which dispersed upon burnt laminate flooring were observed to travel faster than in all other conditions and showed the only significant variation (P=0.04) in the day of emergence in comparison to the control condition of sawdust. This study has demonstrated that wandering phase activity is affected by the environmental surface which has potential implications for estimating both the distance travelled by dispersing larvae in indoor conditions and with further research, may be a consideration in mPMI calculations.This work was supported by the University of Derby Undergraduate Research Scholarly Scheme (grant number URSS056)

    Logics of knowledge and action: critical analysis and challenges

    Get PDF
    International audienceWe overview the most prominent logics of knowledge and action that were proposed and studied in the multiagent systems literature. We classify them according to these two dimensions, knowledge and action, and moreover introduce a distinction between individual knowledge and group knowledge, and between a nonstrategic an a strategic interpretation of action operators. For each of the logics in our classification we highlight problematic properties. They indicate weaknesses in the design of these logics and call into question their suitability to represent knowledge and reason about it. This leads to a list of research challenges
    corecore