5,866 research outputs found
First-passage and extreme-value statistics of a particle subject to a constant force plus a random force
We consider a particle which moves on the x axis and is subject to a constant
force, such as gravity, plus a random force in the form of Gaussian white
noise. We analyze the statistics of first arrival at point of a particle
which starts at with velocity . The probability that the particle
has not yet arrived at after a time , the mean time of first arrival,
and the velocity distribution at first arrival are all considered. We also
study the statistics of the first return of the particle to its starting point.
Finally, we point out that the extreme-value statistics of the particle and the
first-passage statistics are closely related, and we derive the distribution of
the maximum displacement .Comment: Contains an analysis of the extreme-value statistics not included in
first versio
Fluctuations of a long, semiflexible polymer in a narrow channel
We consider an inextensible, semiflexible polymer or worm-like chain, with
persistence length and contour length , fluctuating in a cylindrical
channel of diameter . In the regime , corresponding to a long,
tightly confined polymer, the average length of the channel
occupied by the polymer and the mean square deviation from the average vary as
and , respectively, where
and are dimensionless amplitudes. In earlier work
we determined and the analogous amplitude for a
channel with a rectangular cross section from simulations of very long chains.
In this paper we estimate and from the simulations.
The estimates are compared with exact analytical results for a semiflexible
polymer confined in the transverse direction by a parabolic potential instead
of a channel and with a recent experiment. For the parabolic confining
potential we also obtain a simple analytic result for the distribution of
or radial distribution function, which is asymptotically exact
for large and has the skewed shape seen experimentally.Comment: 21 pages, including 4 figure
Harmonically confined, semiflexible polymer in a channel: response to a stretching force and spatial distribution of the endpoints
We consider an inextensible, semiflexible polymer or worm-like chain which is
confined in the transverse direction by a parabolic potential and subject to a
longitudinal force at the ends, so that the polymer is stretched out and
backfolding is negligible. Simple analytic expressions for the partition
function, valid in this regime, are obtained for chains of arbitrary length
with a variety of boundary conditions at the ends. The spatial distribution of
the end points or radial distribution function is also analyzed.Comment: 14 pages including figure
CO2 and HCO3- uptake in marine diatoms acclimated to different CO2 concentrations.
Rates of cellular uptake of CO2 and HCO3- during steady-state photosynthesis were measured in the marine diatoms Thalassiosira weissflogii and Phaeodactylum tricornutum, acclimated to CO2 partial pressures of 36, 180, 360, and 1,800 ppmv. In addition, in vivo activity of extracellular (eCA) and intracellular (iCA) carbonic anhydrase was determined in relation to CO2 availability. Both species responded to diminishing CO2 supply with an increase in eCA and iCA activity. In P. tricornutum, eCA activity was close to the detection limit at higher CO2 concentrations. Simultaneous uptake of CO2 and HCO3- was observed in both diatoms. At air-equilibrated CO2 levels (360 ppmv), T. weissflogii took up CO2 and HCO3- at approximately the same rate, whereas CO2 uptake exceeded HCO3- uptake by a factor of two in P. tricornutum. In both diatoms, CO2 :HCO3- uptake ratios progressively decreased with decreasing CO2 concentration, whereas substrate affinities of CO2 and HCO3- uptake increased. Half-saturation concentrations were always <=5 mM CO2 for CO2 uptake and <700 mM HCO3- for HCO3- uptake. Our results indicate the presence of highly efficient uptake systems for CO2 and HCO3- in both diatoms at concentrations typically encountered in ocean surface waters and the ability to adjust uptake rates to a wide range of inorganic carbon supply
Radial Distribution Function for Semiflexible Polymers Confined in Microchannels
An analytic expression is derived for the distribution of the
end-to-end distance of semiflexible polymers in external potentials
to elucidate the effect of confinement on the mechanical and statistical
properties of biomolecules. For parabolic confinement the result is exact
whereas for realistic potentials a self-consistent ansatz is developed, so that
is given explicitly even for hard wall confinement. The
theoretical result is in excellent quantitative agreement with fluorescence
microscopy data for actin filaments confined in rectangularly shaped
microchannels. This allows an unambiguous determination of persistence length
and the dependence of statistical properties such as Odijk's deflection
length on the channel width . It is shown that neglecting the
effect of confinement leads to a significant overestimation of bending
rigidities for filaments
Casimir Forces between Spherical Particles in a Critical Fluid and Conformal Invariance
Mesoscopic particles immersed in a critical fluid experience long-range
Casimir forces due to critical fluctuations. Using field theoretical methods,
we investigate the Casimir interaction between two spherical particles and
between a single particle and a planar boundary of the fluid. We exploit the
conformal symmetry at the critical point to map both cases onto a highly
symmetric geometry where the fluid is bounded by two concentric spheres with
radii R_- and R_+. In this geometry the singular part of the free energy F only
depends upon the ratio R_-/R_+, and the stress tensor, which we use to
calculate F, has a particularly simple form. Different boundary conditions
(surface universality classes) are considered, which either break or preserve
the order-parameter symmetry. We also consider profiles of thermodynamic
densities in the presence of two spheres. Explicit results are presented for an
ordinary critical point to leading order in epsilon=4-d and, in the case of
preserved symmetry, for the Gaussian model in arbitrary spatial dimension d.
Fundamental short-distance properties, such as profile behavior near a surface
or the behavior if a sphere has a `small' radius, are discussed and verified.
The relevance for colloidal solutions is pointed out.Comment: 37 pages, 2 postscript figures, REVTEX 3.0, published in Phys. Rev. B
51, 13717 (1995
QCD radiative and power corrections and Generalized GDH sum rules
We extend the earlier suggested QCD-motivated model for the -dependence
of the generalized Gerasimov-Drell-Hearn (GDH) sum rule which assumes the
smooth dependence of the structure function , while the sharp dependence
is due to the contribution and is described by the elastic part of the
Burkhardt-Cottingham sum rule. The model successfully predicts the low crossing
point for the proton GDH integral, but is at variance with the recent very
accurate JLAB data. We show that, at this level of accuracy, one should include
the previously neglected radiative and power QCD corrections, as boundary
values for the model. We stress that the GDH integral, when measured with such
a high accuracy achieved by the recent JLAB data, is very sensitive to QCD
power corrections. We estimate the value of these power corrections from the
JLAB data at . The inclusion of all QCD corrections leads
to a good description of proton, neutron and deuteron data at all .Comment: 10 pages, 4 figures (to be published in Physical Review D
Cross section normalization in proton-proton collisions at = 2.76 TeV and 7 TeV, with ALICE at LHC
Measurements of the cross sections of the reference processes seen by the
ALICE trigger system were obtained based on beam properties measured from van
der Meer scans. The measurements are essential for absolute cross section
determinations of physics processes.
The paper focuses on instrumental and technical aspects of detectors and
accelerators, including a description of the extraction of beam properties from
the van der Meer scan. As a result, cross sections of reference processes seen
by the ALICE trigger system are given for proton-proton collisions at two
energies; =2.76 TeV and 7 TeV, together with systematic uncertainties
originating from beam intensity measurements and other detector effects.
Consistency checks were performed by comparing to data from other experiments
in LHC.Comment: Quark Matter 2011 Conference Proceedings, 4 pages, 2 figure
- …
