29 research outputs found

    Crystal structure of the zinc-, cobalt-, and iron-containing adenylate kinase from Desulfovibrio gigas: a novel metal-containing adenylate kinase from Gram-negative bacteria

    Get PDF
    J Biol Inorg Chem (2011) 16:51–61 DOI 10.1007/s00775-010-0700-8Adenylate kinases (AK) from Gram-negative bacteria are generally devoid of metal ions in their LID domain. However, three metal ions, zinc, cobalt, and iron, have been found in AK from Gram-negative bacteria. Crystal structures of substrate-free AK from Desulfovibrio gigas with three different metal ions (Zn2+, Zn-AK; Co2+, Co-AK; and Fe2+, Fe-AK) bound in its LID domain have been determined by X-ray crystallography to resolutions 1.8, 2.0, and 3.0 Å, respectively. The zinc and iron forms of the enzyme were crystallized in space group I222, whereas the cobalt-form crystals were C2. The presence of the metals was confirmed by calculation of anomalous difference maps and by X-ray fluorescence scans. The work presented here is the first report of a structure of a metal-containing AK from a Gram-negative bacterium. The native enzyme was crystallized, and only zinc was detected in the LID domain. Co-AK and Fe-AK were obtained by overexpressing the protein in Escherichia coli. Zn-AK and Fe-AK crystallized as monomers in the asymmetric unit, whereas Co-AK crystallized as a dimer. Nevertheless, all three crystal structures are very similar to each other, with the same LID domain topology, the only change being the presence of the different metal atoms. In the absence of any substrate, the LID domain of all holoforms of AK was present in a fully open conformational state. Normal mode analysis was performed to predict fluctuations of the LID domain along the catalytic pathway

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe

    Thermal stability of peroxidase from Chamaerops excelsa palm tree at pH 3

    Get PDF
    7 pages, 5 figures, 4 tables.-- PMID: 19428462 [PubMed].-- Printed version published May 1, 2009.The structural stability of a peroxidase, a dimeric protein from palm tree Chamaerops excelsa leaves (CEP), has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism and steady-state tryptophan fluorescence at pH 3. The thermally induced denaturation of CEP at this pH value is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, leading to the conclusion that in solution CEP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of CEP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N -(k)-> D [View source], where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate.This work was partially supported by projects SA-06-00-0 ITACYL-Universidad de Salamanca and SA 129A07 (Junta de Castilla y León) and BFU2004-01432 and BFU2007-68107-C02-02/BMC (Ministerio de Educación y Ciencia) Spain. L.S.Z was fellowship holders from the Junta de Castilla y León, Spain (Ref. EDU/1490/2003).Peer reviewe

    Crystal structure of the Zn/Co-containing adenylate kinase from<i>D. gigas</i>

    Full text link

    Structure

    No full text
    Desulfiovibrio gigas formate dehydrogenase is the first representative of a tungsten-containing enzyme from a mesophile that has been structurally characterized. It is a heterodimer of 110 and 24 kDa subunits. The large subunit, homologous to E. coli FDH-H and to D. desulfuricans nitrate reductase, harbors the W site and one [4Fe-4S] center. No small subunit ortholog containing three [4Fe-4S] clusters has been reported. The structural homology with E. coli FDH-H shows that the essential residues (SeCys158, His159, and Arg407) at the active site are conserved. The active site is accessible via a positively charged tunnel, while product release may be facilitated, for H+ by buried waters and protonable amino acids and for CO2 through a hydrophobic channel

    Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas

    No full text
    An orange- coloured (ORP) protein from D.gigas, a sulphate reducer bacterium, has been previously shown by extended X-ray absorption fine structure to contain a novel mixed-metal sulphide cluster of the type of [S2MoS2CuS2MoS2]. We report here the purification and the biochemical/spectroscopic characterisation of this novel protein. The cluster is not covalently bound to the polypeptide chain. The gene sequence coding for ORP as well as the amino acid sequence was determined. The putative biologic function of ORP was discussed

    Gene sequence and the 1.8 angstrom crystal structure of the tungsten-containing formate dehydrogenase from Desulfolvibrio gigas

    No full text
    Desulfiovibrio gigas formate dehydrogenase is the first representative of a tungsten-containing enzyme from a mesophile that has been structurally characterized. It is a heterodimer of 110 and 24 kDa subunits. The large subunit, homologous to E. coli FDH-H and to D. desulfuricans nitrate reductase, harbors the W site and one [4Fe-4S] center. No small subunit ortholog containing three [4Fe-4S] clusters has been reported. The structural homology with E. coli FDH-H shows that the essential residues (SeCys158, His159, and Arg407) at the active site are conserved. The active site is accessible via a positively charged tunnel, while product release may be facilitated, for H+ by buried waters and protonable amino acids and for CO2 through a hydrophobic channel
    corecore