16 research outputs found
Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages
notes: PMCID: PMC4006850types: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov'tCandida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NFκB signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NFκB signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein mannosylation may play a key role in alterations of phagosomal properties caused by C. glabrata.Deutsche ForschungsgemeinschaftNational Institutes for HealthWellcome TrustBBSR
Spatio-Temporal Dynamics of Yeast Mitochondrial Biogenesis: Transcriptional and Post-Transcriptional mRNA Oscillatory Modules
Examples of metabolic rhythms have recently emerged from studies of budding
yeast. High density microarray analyses have produced a remarkably detailed
picture of cycling gene expression that could be clustered according to
metabolic functions. We developed a model-based approach for the decomposition
of expression to analyze these data and to identify functional modules which,
expressed sequentially and periodically, contribute to the complex and intricate
mitochondrial architecture. This approach revealed that mitochondrial
spatio-temporal modules are expressed during periodic spikes and specific
cellular localizations, which cover the entire oscillatory period. For instance,
assembly factors (32 genes) and translation regulators (47 genes) are expressed
earlier than the components of the amino-acid synthesis pathways (31 genes). In
addition, we could correlate the expression modules identified with particular
post-transcriptional properties. Thus, mRNAs of modules expressed
“early” are mostly translated in the vicinity of
mitochondria under the control of the Puf3p mRNA-binding protein. This last
spatio-temporal module concerns mostly mRNAs coding for basic elements of
mitochondrial construction: assembly and regulatory factors. Prediction that
unknown genes from this module code for important elements of mitochondrial
biogenesis is supported by experimental evidence. More generally, these
observations underscore the importance of post-transcriptional processes in
mitochondrial biogenesis, highlighting close connections between nuclear
transcription and cytoplasmic site-specific translation
Comparative and Functional Genomics Conference Paper The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression
Abstract We have compared Saccharomyces cerevisiae global gene expression in wild-type and mutants ( hap2 and hap4) of the HAP transcriptional complex, which has been shown to be necessary for growth on respiratory substrates. Several hundred ORFs are under positive or negative control of this complex and we analyse here in detail the effect of HAP on mitochondria. We found that most of the genes upregulated in the wild-type strain were involved in organelle functions, but practically none of the downregulated ones. Nuclear genes encoding the different subunits of the respiratory chain complexes figure in the genes more expressed in the wild-type than in the mutants, as expected, but in this group we also found key components of the mitochondrial translation apparatus. This control of mitochondrial translation may be one of the means of coordinating mitochondrial and nuclear gene expression in elaborating the respiratory chain. In addition, HAP controls the nuclear genes involved in several other mitochondrial processes (import, mitochondrial division) that define the metabolic state of the cell, but not mitochondrial DNA replication and transcription. In most cases, a putative CCAAT-binding site is present upstream of the ORF, while in others no such sites are present, suggesting the control to be indirect. The large number of genes regulated by the HAP complex, as well as the fact that HAP also regulates some putative transcriptional activators of unknown function, place this complex at a hierarchically high position in the global transcriptional regulation of the cell
