34,188 research outputs found
Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis
Copyright @ 2012 Nature Publishing GroupThis article has been made available through the Brunel Open Access Publishing Fund.Background: The objective of this study was to determine the molecular mechanism(s) responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double strand break (DSB) repair in cells. Quantitative-PCR (Q-PCR) established the expression levels of key DNA DSB repair proteins. Imaging flow cytometry using Annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Over-expression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.This work was supported in part by The Vidal Sassoon Foundation USA. This article is made available through the Brunel Open Access Publishing Fund
Statistical analysis driven optimized deep learning system for intrusion detection
Attackers have developed ever more sophisticated and intelligent ways to hack
information and communication technology systems. The extent of damage an
individual hacker can carry out upon infiltrating a system is well understood.
A potentially catastrophic scenario can be envisaged where a nation-state
intercepting encrypted financial data gets hacked. Thus, intelligent
cybersecurity systems have become inevitably important for improved protection
against malicious threats. However, as malware attacks continue to dramatically
increase in volume and complexity, it has become ever more challenging for
traditional analytic tools to detect and mitigate threat. Furthermore, a huge
amount of data produced by large networks has made the recognition task even
more complicated and challenging. In this work, we propose an innovative
statistical analysis driven optimized deep learning system for intrusion
detection. The proposed intrusion detection system (IDS) extracts optimized and
more correlated features using big data visualization and statistical analysis
methods (human-in-the-loop), followed by a deep autoencoder for potential
threat detection. Specifically, a pre-processing module eliminates the outliers
and converts categorical variables into one-hot-encoded vectors. The feature
extraction module discard features with null values and selects the most
significant features as input to the deep autoencoder model (trained in a
greedy-wise manner). The NSL-KDD dataset from the Canadian Institute for
Cybersecurity is used as a benchmark to evaluate the feasibility and
effectiveness of the proposed architecture. Simulation results demonstrate the
potential of our proposed system and its outperformance as compared to existing
state-of-the-art methods and recently published novel approaches. Ongoing work
includes further optimization and real-time evaluation of our proposed IDS.Comment: To appear in the 9th International Conference on Brain Inspired
Cognitive Systems (BICS 2018
Drawbacks of ovarian ablation with goserelin in women with breast cancer
In the last few years, ovarian ablation with GnRH agonists has been used as first-line adjuvant therapy in pre and perimenopausal breast cancer. These drugs suppress ovarian function in the hypothalamic-pituitary axis and they have adverse effects in other end-organs. A retrospective study was conducted on 35 premenopausal women, with breast cancer, and treated with goserelin, in order to investigate the effects of iatrogenic estrogen suppression. All women complaint of amenorrhea and only half of them referred hot-flashes, weight gain or arthralgias. Hot-flushes and arthralgias remit spontaneously in the end of the treatment. Osteodensitometry was used to access bone mass. There was a reduction in mineral bone mass and T-score at femoral neck and lumbar spine after the treatment with goserelin, but without statistical significance, except for the T-score in lumbar spine
On the Numerical Evaluation of Loop Integrals With Mellin-Barnes Representations
An improved method is presented for the numerical evaluation of multi-loop
integrals in dimensional regularization. The technique is based on
Mellin-Barnes representations, which have been used earlier to develop
algorithms for the extraction of ultraviolet and infrared divergencies. The
coefficients of these singularities and the non-singular part can be integrated
numerically. However, the numerical integration often does not converge for
diagrams with massive propagators and physical branch cuts. In this work,
several steps are proposed which substantially improve the behavior of the
numerical integrals. The efficacy of the method is demonstrated by calculating
several two-loop examples, some of which have not been known before.Comment: 13 pp. LaTe
A Tree-Loop Duality Relation at Two Loops and Beyond
The duality relation between one-loop integrals and phase-space integrals,
developed in a previous work, is extended to higher-order loops. The duality
relation is realized by a modification of the customary +i0 prescription of the
Feynman propagators, which compensates for the absence of the multiple-cut
contributions that appear in the Feynman tree theorem. We rederive the duality
theorem at one-loop order in a form that is more suitable for its iterative
extension to higher-loop orders. We explicitly show its application to two- and
three-loop scalar master integrals, and we discuss the structure of the
occurring cuts and the ensuing results in detail.Comment: 20 pages. Few typos corrected, some additional comments included,
Appendix B and one reference added. Final version as published in JHE
Recommended from our members
Infrared single spike pulses generation using a short period superconducting tape undulator at APEX
We report on the possibility of constructing an infrared FEL by combining a novel design super-conducting undu-lator developed at LBNL with the high brightness beam from the APEX injector facility. Calculations show that the resulting FEL is expected to deliver a saturated power of over a MW within a ∼4 m undulator length when operating in Self-Amplified-Spontaneus-Emission mode, with a single-spike of coherent radiation at ∼ 2 μm wavelength. The sub-cm undulator periods, associated with the relatively low energy of the APEX beam (20-25 MeV), forces the FEL to operate in a regime with unusual and interesting characteristics. The alternative option of laser seeding the FEL is also briefly examined, showing the potential to reduce the saturation length even further
On BCFW shifts of integrands and integrals
In this article a first step is made towards the extension of
Britto-Cachazo-Feng-Witten (BCFW) tree level on-shell recursion relations to
integrands and integrals of scattering amplitudes to arbitrary loop order.
Surprisingly, it is shown that the large BCFW shift limit of the integrands has
the same structure as the corresponding tree level amplitude in any minimally
coupled Yang-Mills theory in four or more dimensions. This implies that these
integrands can be reconstructed from a subset of their `single cuts'. The main
tool is powercounting Feynman graphs in a special lightcone gauge choice
employed earlier at tree level by Arkani-Hamed and Kaplan. The relation between
shifts of integrands and shifts of its integrals is investigated explicitly at
one loop. Two particular sources of discrepancy between the integral and
integrand are identified related to UV and IR divergences. This is
cross-checked with known results for helicity equal amplitudes at one loop. The
nature of the on-shell residue at each of the single-cut singularities of the
integrand is commented upon. Several natural conjectures and opportunities for
further research present themselves.Comment: 43 pages, 6 figures, v2: minor improvement in exposition, typos
fixed, bibliography update
Heat Treated NiP–SiC Composite Coatings: Elaboration and Tribocorrosion Behaviour in NaCl Solution
Tribocorrosion behaviour of heat-treated NiP and NiP–SiC composite coatings was investigated in a 0.6 M NaCl solution. The tribocorrosion tests were performed in a linear sliding tribometer with an electrochemical cell interface. It was analyzed the influence of SiC particles dispersion in the NiP matrix on current density developed, on coefficient of friction and on wear volume loss. The results showed that NiP–SiC composite coatings had a lower wear volume loss compared to NiP coatings. However, the incorporation of SiC particles into the metallic matrix affects the current density developed by the system during the tribocorrosion test. It was verified that not only the volume of co-deposited particles (SiC vol.%) but also the number of SiC particles per coating area unit (and consequently the SiC particles size) have made influence on the tribocorrosion behaviour of NiP–SiC composite coatings
Rational Terms in Theories with Matter
We study rational remainders associated with gluon amplitudes in gauge
theories coupled to matter in arbitrary representations. We find that these
terms depend on only a small number of invariants of the matter-representation
called indices. In particular, rational remainders can depend on the second and
fourth order indices only. Using this, we find an infinite class of
non-supersymmetric theories in which rational remainders vanish for gluon
amplitudes. This class includes all the "next-to-simplest" quantum field
theories of arXiv:0910.0930. This provides new examples of amplitudes in which
rational remainders vanish even though naive power counting would suggest their
presence.Comment: 10+4 pages. (v2) typos corrected, references adde
- …
