3,535 research outputs found

    Self-Dual Conformal Supergravity and the Hamiltonian Formulation

    Full text link
    In terms of Dirac matrices the self-dual and anti-self-dual decomposition of a conformal supergravity is given and a self-dual conformal supergravity theory is developed as a connection dynamic theory in which the basic dynamic variabes include the self-dual spin connection i.e. the Ashtekar connection rather than the triad. The Hamiltonian formulation and the constraints are obtained by using the Dirac-Bergmann algorithm. PACS numbers: 04.20.Cv, 04.20.Fy,04.65.+

    Biogeochemical Impact of Long-Range Transported Dust over Northern South China Sea

    Get PDF
    Transpacific transport and impact of Asian dust aerosols have been well documented (e.g., results from ACE-Asia and regional follow-on campaigns), but little is known about dust invasion to the South China Sea (SCS). On 19-21 March 2010, a fierce Asian dust storm affected large areas from the Gobi deserts to the West Pacific, including Taiwan and Hong Kong. As a pilot study of the 7-SEAS (Seven South East Asian Studies) in the northern SCS, detailed characteristics of long-range transported dust aerosols were first observed by a comprehensive set of ground-based instruments deployed at the Dongsha islands (20deg42'52" N, 116deg43'51" E). Aerosol measurements such as particle mass concentrations, size distribution, optical properties, hygroscopicity, and vertical profiles help illustrate the evolution of this dust outbreak. Our results indicate that these dust particles were mixed with anthropogenic and marine aerosols, and transported near the surface. Satellite assessment of biogeochemical impact of dust deposition into open oceans is hindered by our current inability in retrieving areal dust properties and ocean colors over an extensive period of time, particularly under the influence of cloudy conditions. In this paper, we analyze the changes of retrieved Chlorophyll-a (Chl-a) concentration over the northern SCS, considered as oligotophic waters in the spring, from long-term SeaWiFS measurements since 1997. Over the past decade, six long-range transported dust events are identified based on spatiotemporal evolutions of PM10 measurements from regional monitoring stations, with the aid of trajectory analysis. Multi-year composites of Chl-a imagery for dust event and non-dust background during March-April are applied to overcome insufficient retrievals of Chl-a due to cloudy environment. Due to anthropogenic modification within a shallow boundary layer off the densely populated and industrial southeast coast of China, the iron ion activation of deliquescent dust particles enhances the efficiency of fertilization for biological productivity. Compared to the West Pacific, the marine ecosystem in the northern SCS is much more susceptible to the biogeochemical impact of long-range transported Asian dust

    Eigenvector Expansion and Petermann Factor for Ohmically Damped Oscillators

    Full text link
    Correlation functions C(t)C(t) \sim in ohmically damped systems such as coupled harmonic oscillators or optical resonators can be expressed as a single sum over modes jj (which are not power-orthogonal), with each term multiplied by the Petermann factor (PF) CjC_j, leading to "excess noise" when Cj>1|C_j| > 1. It is shown that Cj>1|C_j| > 1 is common rather than exceptional, that Cj|C_j| can be large even for weak damping, and that the PF appears in other processes as well: for example, a time-independent perturbation \sim\ep leads to a frequency shift \sim \ep C_j. The coalescence of JJ (>1>1) eigenvectors gives rise to a critical point, which exhibits "giant excess noise" (CjC_j \to \infty). At critical points, the divergent parts of JJ contributions to C(t)C(t) cancel, while time-independent perturbations lead to non-analytic shifts \sim \ep^{1/J}.Comment: REVTeX4, 14 pages, 4 figures. v2: final, 20 single-col. pages, 2 figures. Streamlined with emphasis on physics over formalism; rewrote Section V E so that it refers to time-dependent (instead of non-equilibrium) effect

    Linear Size Optimal q-ary Constant-Weight Codes and Constant-Composition Codes

    Full text link
    An optimal constant-composition or constant-weight code of weight ww has linear size if and only if its distance dd is at least 2w12w-1. When d2wd\geq 2w, the determination of the exact size of such a constant-composition or constant-weight code is trivial, but the case of d=2w1d=2w-1 has been solved previously only for binary and ternary constant-composition and constant-weight codes, and for some sporadic instances. This paper provides a construction for quasicyclic optimal constant-composition and constant-weight codes of weight ww and distance 2w12w-1 based on a new generalization of difference triangle sets. As a result, the sizes of optimal constant-composition codes and optimal constant-weight codes of weight ww and distance 2w12w-1 are determined for all such codes of sufficiently large lengths. This solves an open problem of Etzion. The sizes of optimal constant-composition codes of weight ww and distance 2w12w-1 are also determined for all w6w\leq 6, except in two cases.Comment: 12 page

    Hamiltonian and Linear-Space Structure for Damped Oscillators: I. General Theory

    Full text link
    The phase space of NN damped linear oscillators is endowed with a bilinear map under which the evolution operator is symmetric. This analog of self-adjointness allows properties familiar from conservative systems to be recovered, e.g., eigenvectors are "orthogonal" under the bilinear map and obey sum rules, initial-value problems are readily solved and perturbation theory applies to the_complex_ eigenvalues. These concepts are conveniently represented in a biorthogonal basis.Comment: REVTeX4, 10pp., 1 PS figure. N.B.: `Alec' is my first name, `Maassen van den Brink' my family name. v2: extensive streamlinin

    Catalytic Performance of Commercial Zeolites Y as Catalyst for Ethylene Production from Ethanol Dehydration

    Get PDF
    Catalytic dehydration of ethanol into ethylene was studied over commercial Zeolites-Y with different Si:Al ratios between 5.1:1 and 80:1, and temperature from 573 K to 773 K. The physicochemical properties of fresh and spent catalyst of Zeolite Y Si:Al 80:1 (best performing catalyst) were investigated using N2-physisorption, TGA, SEM-EDX, NH3-TPD, FTIR and XRD. Results showed that catalysts with higher Si:Al ratios exhibit better catalytic performance in terms of higher ethanol conversion and higher selectivity to ethylene. Indeed, zeolites-Y with Si:Al ratio 5.1:1 and 12:1 demonstrated low catalytic activity with ethanol conversion of 34% and 2%, respectively. However, ethylene selectivity of NH3-Y (5) was 84%, which was considerably higher than NH3-Y (12) which was 26%, indicated that this catalyst was not promoting the formation of other hydrocarbons i.e. methane and ethane. Albeit all of the catalysts namely H-Y (30), H-Y (60) and H-Y (80) showed favorable performance in ethanol dehydration, H-Y (80) attained almost total selectivity to ethylene and highest conversion of 73.0% among all the tested catalysts

    Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties

    Get PDF
    Glucose is abundant in nature and can be found in various sources. In this study, we developed multifunctional carbon dots (CDs) with glucose, and poly(ethyleneimine) (PEI) which were further quaternized using a facile approach. The CDs are designed to possess both antibacteria and gene delivery capabilities. The inherent property was characterized with TEM, NMR, FTIR and fluorescent spectroscopy. Antibacterial activity was evaluated with Broth minimum inhibitory concentration (MIC) assay on both gram-positive and gram-negative bacteria. The CDs showed excellent inhibitation to both bacteria. The expression of CDs condensed plasmid DNA in HEK 293T cells was investigated with Luciferase expression assay. Gene transfection capability of the quaternized CDs was found to be up to 104 times efficient than naked DNA delivery

    Leptogenesis from Soft Supersymmetry Breaking (Soft Leptogenesis)

    Full text link
    Soft leptogenesis is a scenario in which the cosmic baryon asymmetry is produced from a lepton asymmetry generated in the decays of heavy sneutrinos (the partners of the singlet neutrinos of the seesaw) and where the relevant sources of CP violation are the complex phases of soft supersymmetry-breaking terms. We explain the motivations for soft leptogenesis, and review its basic ingredients: the different CP-violating contributions, the crucial role played by thermal corrections, and the enhancement of the efficiency from lepton flavour effects. We also discuss the high temperature regime T>107T > 10^7 GeV in which the cosmic baryon asymmetry originates from an initial asymmetry of an anomalous RR-charge, and soft leptogenesis reembodies in RR-genesis.Comment: References updated. Some minor corrections to match the published versio

    Synthesis and characterization of nickel ferrite magnetic nanoparticles by co-precipitation method

    Get PDF
    Magnetic nickel ferrite (NiFe2O4) nanoparticles have been synthesized via co-precipitation method by varying the metal precursors ratio. Four different precursors ratio (Fe:Ni) are varied at 40:60, 50:50, 60:40 and 80:20. The size of the nanoparticles is found to increase with increasing iron (Fe) content. In addition, the morphology of the particles are observed to change from spherical to a shape similar to a nanooctahedral particle when the Fe content in the initial precursors ratio increases. The X-ray Diffraction (XRD) patterns have proved the presence of nickel ferrite nanoparticles. The magnetic properties characterized by Vibrating Sample Magnetometer (VSM) at room temperature proved that the assynthesized nickel ferrite nanoparticles are ferromagnetic and the saturation magnetization (Ms) increases with the content of Fe in the sample

    Flavoured soft leptogenesis and natural values of the B term

    Full text link
    We revisit flavour effects in soft leptogenesis relaxing the assumption of universality for the soft supersymmetry breaking terms. We find that with respect to the case in which the heavy sneutrinos decay with equal rates and equal CP asymmetries for all lepton flavours, hierarchical flavour configurations can enhance the efficiency by more than two orders of magnitude. This translates in more than three order of magnitude with respect to the one-flavour approximation. We verify that lepton flavour equilibration effects related to off-diagonal soft slepton masses are ineffective for damping these large enhancements. We show that soft leptogenesis can be successful for unusual values of the relevant parameters, allowing for BO(TeV)B\sim {\cal O}({\rm TeV}) and for values of the washout parameter up to meff/m5×103m_{\rm eff}/m_* \sim 5\times 10^{3}.Comment: 23 pages, 5 figures postscript, Minor changes to match the published version in JHE
    corecore