491 research outputs found

    The evolution of stars in the Taurus-Auriga T association

    Full text link
    In a recent study, individual parallaxes were determined for many stars of the Taurus-Auriga T association that are members of the same moving group. We use these new parallaxes to re-address the issue of the relationship between classical T Tauri stars (CTTSs) and weak-emission line T Tauri stars (WTTSs). With the available spectroscopic and photometric information for 72 individual stars or stellar systems among the Taurus-Auriga objects with known parallaxes, we derived reliable photospheric luminosities, mainly from the Ic magnitude of these objects. We then studied the mass and age distributions of the stellar sample, using pre-main sequence evolutionary models to determine the basic properties of the stellar sample. Statistical tests and Monte Carlo simulations were then applied to studying the properties of the two T Tauri subclasses. We find that the probability of CTTS and WTTS samples being drawn from the same parental age and mass distributions is low; CTTSs are, on average, younger than WTTSs. They are also less massive, but this is due to selection effects. The observed mass and age distributions of both T Tauri subclasses can be understood in the framework of a simple disk evolution model, assuming that the CTTSs evolve into WTTSs when their disks are fully accreted by the stars. According to this empirical model, the average disk lifetime in Taurus-Auriga is 4 10**6 (Mstar/Msun)**0.75 yr.Comment: accepted by A&A Letter

    Temporal evolution of magnetic molecular shocks I. Moving grid simulations

    Full text link
    We present time-dependent 1D simulations of multifluid magnetic shocks with chemistry resolved down to the mean free path. They are obtained with an adaptive moving grid implemented with an implicit scheme. We examine a broad range of parameters relevant to conditions in dense molecular clouds, with preshock densities between 10^3 and 10^5 cm-3, velocities between 10 and 40 km/s, and three different scalings for the transverse magnetic field: B=0,0.1,1 \mu G \sqrt{n.cm3}. We first use this study to validate the results of Chi\`eze, Pineau des For\^ets & Flower (1998), in particular the long delays necessary to obtain steady C-type shocks, and we provide evolutionary time-scales for a much greater range of parameters. We also present the first time-dependent models of dissociative shocks with a magnetic precursor, including the first models of stationary CJ shocks in molecular conditions. We find that the maximum speed for steady C-type shocks is reached before the occurrence of a sonic point in the neutral fluid, unlike previously thought. As a result, the maximum speed for C-shocks is lower than previously believed. Finally, we find a large amplitude bouncing instability in J-type fronts near the H2 dissociation limit (u ~ 25-30 km/s), driven by H2 dissociation/reformation. At higher speeds, we find an oscillatory behaviour of short period and small amplitude linked to collisional ionisation of H. Both instabilities are suppressed after some time when a magnetic field is present. In a companion paper, we use the present simulations to validate a new semi-analytical construction method for young low-velocity magnetic shocks based on truncated steady-state models.Comment: A&A in pres

    Origin of the wide-angle hot H2 in DG Tauri: New insight from SINFONI spectro-imaging

    Full text link
    We wish to test the origins proposed for the extended hot H2 at 2000K around the atomic jet from the T Tauri star DGTau, in order to constrain the wide-angle wind structure and the possible presence of an MHD disk wind. We present flux calibrated IFS observations in H2 1-0 S(1) obtained with SINFONI/VLT. Thanks to spatial deconvolution by the PSF and to accurate correction for uneven slit illumination, we performed a thorough analysis and modeled the morphology, kinematics, and surface brightness. We also compared our results with studies in [FeII], [OI], and FUV-pumped H2. The limb-brightened H2 emission in the blue lobe is strikingly similar to FUV-pumped H2 imaged 6yr later, confirming that they trace the same hot gas and setting an upper limit of 12km/s on any expansion proper motion. The wide-angle H2 rims are at lower blueshifts than probed by narrow long-slit spectra. We confirm that they extend to larger angle and to lower speed the onion-like velocity structure observed in optical atomic lines. The latter is shown to be steady over more/equal than 4yr but undetected in [FeII] by SINFONI, probably due to strong iron depletion. The H2 rim thickness less/equal than 14AU rules out excitation by C-shocks, and J-shock speeds are constrained to 10km/s. We find that explaining the H2 wide-angle emission with a shocked layer requires either a recent outburst (15yr) into a pre-existing ambient outflow or an excessive wind mass flux. A slow photoevaporative wind from the dense irradiated disk surface and an MHD disk wind heated by ambipolar diffusion seem to be more promising and need to be modeled in more detail

    Molecule survival in magnetized protostellar disk winds. II. Predicted H2O line profiles versus Herschel/HIFI observations

    Full text link
    We investigate whether the broad wings of H2O emission identified with Herschel towards low-mass Class 0 and Class 1 protostars may be consistent with an origin in a dusty MHD disk wind, and the constraints it would set on the underlying disk properties. We present synthetic H2O line profiles predictions for a typical MHD disk wind solution with various values of disk accretion rate, stellar mass, extension of the launching area, and view angle. We compare them in terms of line shapes and intensities with the HIFI profiles observed by the WISH Key Program. We find that a dusty MHD disk wind launched from 0.2--0.6 AU AU to 3--25 AU can reproduce to a remarkable degree the observed shapes and intensities of the broad H2O component, both in the fundamental 557 GHz line and in more excited lines. Such a model also readily reproduces the observed correlation of 557 GHz line luminosity with envelope density, if the infall rate at 1000 AU is 1--3 times the disk accretion rate in the wind ejection region. It is also compatible with the typical disk size and bolometric luminosity in the observed targets. However, the narrower line profiles in Class 1 sources suggest that MHD disk winds in these sources, if present, would have to be slower and/or less water rich than in Class 0 sources. In conclusion, MHD disk winds appear as a valid (though not unique) option to consider for the origin of the broad H2O component in low-mass protostars. ALMA appears ideally suited to further test this model by searching for resolved signatures of the warm and slow wide-angle molecular wind that would be predicted.Comment: accepted for publication in A&

    First results from the CALYPSO IRAM-PdBI survey - III. Monopolar jets driven by a proto-binary system in NGC1333-IRAS2A

    Get PDF
    Context: The earliest evolutionary stages of low-mass protostars are characterised by hot and fast jets which remove angular momentum from the circumstellar disk, thus allowing mass accretion onto the central object. However, the launch mechanism is still being debated. Aims: We would like to exploit high-angular (~ 0.8") resolution and high-sensitivity images to investigate the origin of protostellar jets using typical molecular tracers of shocked regions, such as SiO and SO. Methods: We mapped the inner 22" of the NGC1333-IRAS2A protostar in SiO(5-4), SO(65-54), and the continuum emission at 1.4 mm using the IRAM Plateau de Bure interferometer in the framework of the CALYPSO IRAM large program. Results: For the first time, we disentangle the NGC1333-IRAS2A Class 0 object into a proto-binary system revealing two protostars (MM1, MM2) separated by ~ 560 AU, each of them driving their own jet, while past work considered a single protostar with a quadrupolar outflow. We reveal (i) a clumpy, fast (up to |V-VLSR| > 50 km/s), and blueshifted jet emerging from the brightest MM1 source, and (ii) a slower redshifted jet, driven by MM2. Silicon monoxide emission is a powerful tracer of high-excitation (Tkin > 100 K; n(H2) > 10^5 cm-3) jets close to the launching region. At the highest velocities, SO appears to mimic SiO tracing the jets, whereas at velocities close to the systemic one, SO is dominated by extended emission, tracing the cavity opened by the jet. Conclusions: Both jets are intrinsically monopolar, and intermittent in time. The dynamical time of the SiO clumps is < 30-90 yr, indicating that one-sided ejections from protostars can take place on these timescales.Comment: Astronomy & Astrophysics Letter, in pres

    Water and acetaldehyde in HH212: The first hot corino in Orion

    Get PDF
    Aims: Using the unprecedented combination of high resolution and sensitivity offered by ALMA, we aim to investigate whether and how hot corinos, circumstellar disks, and ejected gas are related in young solar-mass protostars. Methods: We observed CH3_3CHO and deuterated water (HDO) high-excitation (EuE_{\rm u} up to 335 K) lines towards the Sun-like protostar HH212--MM1. Results: For the first time, we have obtained images of CH3_3CHO and HDO emission in the inner \simeq 100 AU of HH212. The multifrequency line analysis allows us to contrain the density (\geq 107^{7} cm3^{-3}), temperature (\simeq 100 K), and CH3_3CHO abundance (\simeq 0.2--2 ×\times 109^{-9}) of the emitting region. The HDO profile is asymmetric at low velocities (\leq 2 km s1^{-1} from VsysV_{\rm sys}). If the HDO line is optically thick, this points to an extremely small (\sim 20--40 AU) and dense (\ge 109^{9} cm3^{-3}) emitting region. Conclusions: We report the first detection of a hot corino in Orion. The HDO asymmetric profile indicates a contribution of outflowing gas from the compact central region, possibly associated with a dense disk wind.Comment: Astronomy & Astrophysics Letter, in pres

    First results from the CALYPSO IRAM-PdBI survey. I. Kinematics of the inner envelope of NGC1333-IRAS2A

    Full text link
    The structure and kinematics of Class 0 protostars on scales of a few hundred AU is poorly known. Recent observations have revealed the presence of Keplerian disks with a diameter of 150-180 AU in L1527-IRS and VLA1623A, but it is not clear if such disks are common in Class 0 protostars. Here we present high-angular-resolution observations of two methanol lines in NGC1333-IRAS2A. We argue that these lines probe the inner envelope, and we use them to study the kinematics of this region. Our observations suggest the presence of a marginal velocity gradient normal to the direction of the outflow. However, the position velocity diagrams along the gradient direction appear inconsistent with a Keplerian disk. Instead, we suggest that the emission originates from the infalling and perhaps slowly rotating envelope, around a central protostar of 0.1-0.2 M_\odot. If a disk is present, it is smaller than the disk of L1527-IRS, perhaps suggesting that NGC1333-IRAS2A is younger.Comment: Accepted for publication in A&A letter

    The jet and the disk of the HH 212 low-mass protostar imaged by ALMA: SO and SO2 emission

    Get PDF
    To investigate the disk formation and jet launch in protostars is crucial to comprehend the earliest stages of star and planet formation. We aim to constrain the properties of the molecular jet and the disk of the HH 212 protostellar system at unprecedented angular scales through ALMA observations of sulfur-bearing molecules, SO 9(8)-8(7), SO 10(11)-10(10), SO2 8(2,6)-7(1,7). SO 9(8)-8(7) and SO2 8(2,6)-7(1,7) show broad velocity profiles. At systemic velocity they probe the circumstellar gas and the cavity walls. Going from low to high blue-/red-shifted velocities the emission traces the wide-angle outflow and the fast (~100-200 km/s) and collimated (~90 AU) molecular jet revealing the inner knots with timescales <50 years. The jet transports a mass loss rate >0.2-2e-6 Msun/yr, implying high ejection efficiency (>0.03-0.3). The SO and SO2 abundances in the jet are ~1e-7-1e-6. SO 10(11)-10(10) emission is compact and shows small-scale velocity gradients indicating that it originates partly from the rotating disk previously seen in HCO+ and C17O, and partly from the base of the jet. The disk mass is >0.002-0.013 Msun, and the SO abundance in the disk is ~1e-8-1e-7. SO and SO2 are effective tracers of the molecular jet in the inner few hundreds AU from the protostar. Their abundances indicate that 1% - 40% of sulfur is in SO and SO2 due to shocks in the jet/outflow and/or to ambipolar diffusion at the wind base. The SO abundance in the disk is 3-4 orders of magnitude larger than in evolved protoplanetary disks. This may be due to an SO enhancement in the accretion shock at the envelope-disk interface or in spiral shocks if the disk is partly gravitationally unstable.Comment: 13 pages, 10 figures, accepted for publication by A&

    Depletion and low gas temperature in the L183 prestellar core: the N2H+ - N2D+ tool

    Get PDF
    Context. The study of pre-stellar cores (PSCs) suffers from a lack of undepleted species to trace the gas physical properties in their very dense inner parts. Aims. We want to carry out detailed modelling of N2H+ and N2D+ cuts across the L183 main core to evaluate the depletion of these species and their usefulness as a probe of physical conditions in PSCs. Methods. We have developed a non-LTE (NLTE) Monte-Carlo code treating the 1D radiative transfer of both N2H+ and N2D+, making use of recently published collisional coefficients with He between individual hyperfine levels. The code includes line overlap between hyperfine transitions. An extensive set of core models is calculated and compared with observations. Special attention is paid to the issue of source coupling to the antenna beam. Results. The best fitting models indicate that i) gas in the core center is very cold (7±\pm 1 K) and thermalized with dust, ii) depletion of N2H+ does occur, starting at densities 5-7E5 cm&#8722;3 and reaching a factor of 6 (+13/&#8722;3) in abundance, iii) deuterium fractionation reaches &#8764;70% at the core center, and iv) the density profile is proportional to r^-1 out to &#8764;4000 AU, and to r^&#8722;2 beyond. Conclusions. Our NLTE code could be used to (re-)interpret recent and upcoming observations of N2H+ and N2D+ in many pre-stellar cores of interest, to obtain better temperature and abundance profiles
    corecore