1,335 research outputs found

    Local Rigidity in Sandpile Models

    Full text link
    We address the problem of the role of the concept of local rigidity in the family of sandpile systems. We define rigidity as the ratio between the critical energy and the amplitude of the external perturbation and we show, in the framework of the Dynamically Driven Renormalization Group (DDRG), that any finite value of the rigidity in a generalized sandpile model renormalizes to an infinite value at the fixed point, i.e. on a large scale. The fixed point value of the rigidity allows then for a non ambiguous distinction between sandpile-like systems and diffusive systems. Numerical simulations support our analytical results.Comment: to be published in Phys. Rev.

    Multi-layer model for the web graph

    Get PDF
    This paper studies stochastic graph models of the WebGraph. We present a new model that describes the WebGraph as an ensemble of different regions generated by independent stochastic processes (in the spirit of a recent paper by Dill et al. [VLDB 2001]). Models such as the Copying Model [17] and Evolving Networks Model [3] are simulated and compared on several relevant measures such as degree and clique distribution

    An ensemble approach to the analysis of weighted networks

    Get PDF
    We present a new approach to the calculation of measures in weighted networks, based on the translation of a weighted network into an ensemble of edges. This leads to a straightforward generalization of any measure defined on unweighted networks, such as the average degree of the nearest neighbours, the clustering coefficient, the `betweenness', the distance between two nodes and the diameter of a network. All these measures are well established for unweighted networks but have hitherto proven difficult to define for weighted networks. Further to introducing this approach we demonstrate its advantages by applying the clustering coefficient constructed in this way to two real-world weighted networks.Comment: 4 pages 3 figure

    Networks of equities in financial markets

    Full text link
    We review the recent approach of correlation based networks of financial equities. We investigate portfolio of stocks at different time horizons, financial indices and volatility time series and we show that meaningful economic information can be extracted from noise dressed correlation matrices. We show that the method can be used to falsify widespread market models by directly comparing the topological properties of networks of real and artificial markets.Comment: 9 pages, 8 figures. Accepted for publication in EPJ

    Statistical entropy of the Schwarzschild black hole

    Get PDF
    We derive the statistical entropy of the Schwarzschild black hole by considering the asymptotic symmetry algebra near the I\cal{I^{-}} boundary of the spacetime at past null infinity. Using a two-dimensional description and the Weyl invariance of black hole thermodynamics this symmetry algebra can be mapped into the Virasoro algebra generating asymptotic symmetries of anti-de Sitter spacetime. Using lagrangian methods we identify the stress-energy tensor of the boundary conformal field theory and we calculate the central charge of the Virasoro algebra. The Bekenstein-Hawking result for the black hole entropy is regained using Cardy's formula. Our result strongly supports a non-local realization of the holographic principleComment: 3 pages no figure

    Self-organized network evolution coupled to extremal dynamics

    Full text link
    The interplay between topology and dynamics in complex networks is a fundamental but widely unexplored problem. Here, we study this phenomenon on a prototype model in which the network is shaped by a dynamical variable. We couple the dynamics of the Bak-Sneppen evolution model with the rules of the so-called fitness network model for establishing the topology of a network; each vertex is assigned a fitness, and the vertex with minimum fitness and its neighbours are updated in each iteration. At the same time, the links between the updated vertices and all other vertices are drawn anew with a fitness-dependent connection probability. We show analytically and numerically that the system self-organizes to a non-trivial state that differs from what is obtained when the two processes are decoupled. A power-law decay of dynamical and topological quantities above a threshold emerges spontaneously, as well as a feedback between different dynamical regimes and the underlying correlation and percolation properties of the network.Comment: Accepted version. Supplementary information at http://www.nature.com/nphys/journal/v3/n11/suppinfo/nphys729_S1.htm

    Invasion Percolation with Temperature and the Nature of SOC in Real Systems

    Full text link
    We show that the introduction of thermal noise in Invasion Percolation (IP) brings the system outside the critical point. This result suggests a possible definition of SOC systems as ordinary critical systems where the critical point correspond to set to 0 one of the parameters. We recover both IP and EDEN model, for T0T \to 0, and TT \to \infty respectively. For small TT we find a dynamical second order transition with correlation length diverging when T0T \to 0.Comment: 4 pages, 2 figure

    Random hypergraphs and their applications

    Get PDF
    In the last few years we have witnessed the emergence, primarily in on-line communities, of new types of social networks that require for their representation more complex graph structures than have been employed in the past. One example is the folksonomy, a tripartite structure of users, resources, and tags -- labels collaboratively applied by the users to the resources in order to impart meaningful structure on an otherwise undifferentiated database. Here we propose a mathematical model of such tripartite structures which represents them as random hypergraphs. We show that it is possible to calculate many properties of this model exactly in the limit of large network size and we compare the results against observations of a real folksonomy, that of the on-line photography web site Flickr. We show that in some cases the model matches the properties of the observed network well, while in others there are significant differences, which we find to be attributable to the practice of multiple tagging, i.e., the application by a single user of many tags to one resource, or one tag to many resources.Comment: 11 pages, 7 figure

    Hyperbolicity Measures "Democracy" in Real-World Networks

    Full text link
    We analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. In our interpretation, a network with small hyperbolicity is "aristocratic", because it contains a small set of vertices involved in many shortest paths, so that few elements "connect" the systems, while a network with large hyperbolicity has a more "democratic" structure with a larger number of crucial elements. We prove mathematically the soundness of this interpretation, and we derive its consequences by analyzing a large dataset of real-world networks. We confirm and improve previous results on hyperbolicity, and we analyze them in the light of our interpretation. Moreover, we study (for the first time in our knowledge) the hyperbolicity of the neighborhood of a given vertex. This allows to define an "influence area" for the vertices in the graph. We show that the influence area of the highest degree vertex is small in what we define "local" networks, like most social or peer-to-peer networks. On the other hand, if the network is built in order to reach a "global" goal, as in metabolic networks or autonomous system networks, the influence area is much larger, and it can contain up to half the vertices in the graph. In conclusion, our newly introduced approach allows to distinguish the topology and the structure of various complex networks

    Waiting time dynamics of priority-queue networks

    Full text link
    We study the dynamics of priority-queue networks, generalizations of the binary interacting priority queue model introduced by Oliveira and Vazquez [Physica A {\bf 388}, 187 (2009)]. We found that the original AND-type protocol for interacting tasks is not scalable for the queue networks with loops because the dynamics becomes frozen due to the priority conflicts. We then consider a scalable interaction protocol, an OR-type one, and examine the effects of the network topology and the number of queues on the waiting time distributions of the priority-queue networks, finding that they exhibit power-law tails in all cases considered, yet with model-dependent power-law exponents. We also show that the synchronicity in task executions, giving rise to priority conflicts in the priority-queue networks, is a relevant factor in the queue dynamics that can change the power-law exponent of the waiting time distribution.Comment: 5 pages, 3 figures, minor changes, final published versio
    corecore