1,335 research outputs found
Local Rigidity in Sandpile Models
We address the problem of the role of the concept of local rigidity in the
family of sandpile systems. We define rigidity as the ratio between the
critical energy and the amplitude of the external perturbation and we show, in
the framework of the Dynamically Driven Renormalization Group (DDRG), that any
finite value of the rigidity in a generalized sandpile model renormalizes to an
infinite value at the fixed point, i.e. on a large scale. The fixed point value
of the rigidity allows then for a non ambiguous distinction between
sandpile-like systems and diffusive systems. Numerical simulations support our
analytical results.Comment: to be published in Phys. Rev.
Multi-layer model for the web graph
This paper studies stochastic graph models of the WebGraph. We present a new model that describes the WebGraph as an ensemble of different regions generated by independent stochastic processes (in the spirit of a recent paper by Dill et al. [VLDB 2001]). Models such as the Copying Model [17] and Evolving Networks Model [3] are simulated and compared on several relevant measures such as degree and clique distribution
An ensemble approach to the analysis of weighted networks
We present a new approach to the calculation of measures in weighted
networks, based on the translation of a weighted network into an ensemble of
edges. This leads to a straightforward generalization of any measure defined on
unweighted networks, such as the average degree of the nearest neighbours, the
clustering coefficient, the `betweenness', the distance between two nodes and
the diameter of a network. All these measures are well established for
unweighted networks but have hitherto proven difficult to define for weighted
networks. Further to introducing this approach we demonstrate its advantages by
applying the clustering coefficient constructed in this way to two real-world
weighted networks.Comment: 4 pages 3 figure
Networks of equities in financial markets
We review the recent approach of correlation based networks of financial
equities. We investigate portfolio of stocks at different time horizons,
financial indices and volatility time series and we show that meaningful
economic information can be extracted from noise dressed correlation matrices.
We show that the method can be used to falsify widespread market models by
directly comparing the topological properties of networks of real and
artificial markets.Comment: 9 pages, 8 figures. Accepted for publication in EPJ
Statistical entropy of the Schwarzschild black hole
We derive the statistical entropy of the Schwarzschild black hole by
considering the asymptotic symmetry algebra near the boundary of
the spacetime at past null infinity. Using a two-dimensional description and
the Weyl invariance of black hole thermodynamics this symmetry algebra can be
mapped into the Virasoro algebra generating asymptotic symmetries of anti-de
Sitter spacetime. Using lagrangian methods we identify the stress-energy tensor
of the boundary conformal field theory and we calculate the central charge of
the Virasoro algebra. The Bekenstein-Hawking result for the black hole entropy
is regained using Cardy's formula. Our result strongly supports a non-local
realization of the holographic principleComment: 3 pages no figure
Self-organized network evolution coupled to extremal dynamics
The interplay between topology and dynamics in complex networks is a
fundamental but widely unexplored problem. Here, we study this phenomenon on a
prototype model in which the network is shaped by a dynamical variable. We
couple the dynamics of the Bak-Sneppen evolution model with the rules of the
so-called fitness network model for establishing the topology of a network;
each vertex is assigned a fitness, and the vertex with minimum fitness and its
neighbours are updated in each iteration. At the same time, the links between
the updated vertices and all other vertices are drawn anew with a
fitness-dependent connection probability. We show analytically and numerically
that the system self-organizes to a non-trivial state that differs from what is
obtained when the two processes are decoupled. A power-law decay of dynamical
and topological quantities above a threshold emerges spontaneously, as well as
a feedback between different dynamical regimes and the underlying correlation
and percolation properties of the network.Comment: Accepted version. Supplementary information at
http://www.nature.com/nphys/journal/v3/n11/suppinfo/nphys729_S1.htm
Invasion Percolation with Temperature and the Nature of SOC in Real Systems
We show that the introduction of thermal noise in Invasion Percolation (IP)
brings the system outside the critical point. This result suggests a possible
definition of SOC systems as ordinary critical systems where the critical point
correspond to set to 0 one of the parameters. We recover both IP and EDEN
model, for , and respectively. For small we find a
dynamical second order transition with correlation length diverging when .Comment: 4 pages, 2 figure
Random hypergraphs and their applications
In the last few years we have witnessed the emergence, primarily in on-line
communities, of new types of social networks that require for their
representation more complex graph structures than have been employed in the
past. One example is the folksonomy, a tripartite structure of users,
resources, and tags -- labels collaboratively applied by the users to the
resources in order to impart meaningful structure on an otherwise
undifferentiated database. Here we propose a mathematical model of such
tripartite structures which represents them as random hypergraphs. We show that
it is possible to calculate many properties of this model exactly in the limit
of large network size and we compare the results against observations of a real
folksonomy, that of the on-line photography web site Flickr. We show that in
some cases the model matches the properties of the observed network well, while
in others there are significant differences, which we find to be attributable
to the practice of multiple tagging, i.e., the application by a single user of
many tags to one resource, or one tag to many resources.Comment: 11 pages, 7 figure
Hyperbolicity Measures "Democracy" in Real-World Networks
We analyze the hyperbolicity of real-world networks, a geometric quantity
that measures if a space is negatively curved. In our interpretation, a network
with small hyperbolicity is "aristocratic", because it contains a small set of
vertices involved in many shortest paths, so that few elements "connect" the
systems, while a network with large hyperbolicity has a more "democratic"
structure with a larger number of crucial elements.
We prove mathematically the soundness of this interpretation, and we derive
its consequences by analyzing a large dataset of real-world networks. We
confirm and improve previous results on hyperbolicity, and we analyze them in
the light of our interpretation.
Moreover, we study (for the first time in our knowledge) the hyperbolicity of
the neighborhood of a given vertex. This allows to define an "influence area"
for the vertices in the graph. We show that the influence area of the highest
degree vertex is small in what we define "local" networks, like most social or
peer-to-peer networks. On the other hand, if the network is built in order to
reach a "global" goal, as in metabolic networks or autonomous system networks,
the influence area is much larger, and it can contain up to half the vertices
in the graph. In conclusion, our newly introduced approach allows to
distinguish the topology and the structure of various complex networks
Waiting time dynamics of priority-queue networks
We study the dynamics of priority-queue networks, generalizations of the
binary interacting priority queue model introduced by Oliveira and Vazquez
[Physica A {\bf 388}, 187 (2009)]. We found that the original AND-type protocol
for interacting tasks is not scalable for the queue networks with loops because
the dynamics becomes frozen due to the priority conflicts. We then consider a
scalable interaction protocol, an OR-type one, and examine the effects of the
network topology and the number of queues on the waiting time distributions of
the priority-queue networks, finding that they exhibit power-law tails in all
cases considered, yet with model-dependent power-law exponents. We also show
that the synchronicity in task executions, giving rise to priority conflicts in
the priority-queue networks, is a relevant factor in the queue dynamics that
can change the power-law exponent of the waiting time distribution.Comment: 5 pages, 3 figures, minor changes, final published versio
- …
