782 research outputs found
Implementation and Validation of the Roche Light Cycler 480 96-Well Plate Platform as a Real-Time PCR Assay for the Quantitative Detection of Cytomegalovirus (CMV) in Clinical Specimens Using the Luminex MultiCode ASRs System.
Allogenic stem-cell therapies benefit patients in the treatment of multiple diseases; however, the side effects of stem-cell therapies (SCT) derived from the concomitant use of immune suppression agents often include triggering infection diseases. Thus, analysis is required to improve the detection of pathogen infections in SCT. We develop a polymerase chain reaction (PCR)-based methodology for the qualitative real-time DNA detection of cytomegalovirus (CMV), with reference to herpes simplex virus types 1 (HSVI), Epstein-Barr virus (EBV), and varicella-zoster virus (VZV) in blood, urine, solid tissues, and cerebrospinal fluid. This real-time PCR of 96-well plate format provides a rapid framework as required by the Food and Drug Administration (FDA) for clinical settings, including the processing of specimens, reagent handling, special safety precautions, quality control criteria and analytical accuracy, precisely reportable range (analyst measurement range), reference range, limit of detection (LOD), analytical specificity established by interference study, and analyte stability. Specifically, we determined the reportable range (analyst measurement range) with the following criteria: CMV copies ≥200 copies/mL; report copy/mL value; CMV copies ≤199 copies/mL; report detected but below quantitative range; CMV copies = 0 with report <200 copies/mL. That is, with reference range, copy numbers (CN) per milliliter (mL) of the LOD were determined by standard curves that correlated Ct value and calibrated standard DNA panels. The three repeats determined that the measuring range was 1E2~1E6 copies/mL. The standard curves show the slopes were within the range -2.99 to -3.65 with R2 ≥ 0.98. High copy (HC) controls were within 0.17-0.18 log differences of DNA copy numbers; (2) low copy (LC) controls were within 0.17-0.18 log differences; (3) LOD was within 0.14-0.15 log differences. As such, we set up a fast, simple, inexpensive, sensitive, and reliable molecular approach for the qualitative detection of CMV pathogens. Conclusion: This real-time PCR of the 96-well plate format provides a rapid framework as required by the FDA for clinical settings
Recommended from our members
Single-cell transcriptomes reveal the mechanism for a breast cancer prognostic gene panel.
The clinical benefits of the MammaPrint® signature for breast cancer is well documented; however, how these genes are related to cell cycle perturbation have not been well determined. Our single-cell transcriptome mapping (algorithm) provides details into the fine perturbation of all individual genes during a cell cycle, providing a view of the cell-cycle-phase specific landscape of any given human genes. Specifically, we identified that 38 out of the 70 (54%) MammaPrint® signature genes are perturbated to a specific phase of the cell cycle. The MammaPrint® signature panel derived its clinical prognosis power from measuring the cell cycle activity of specific breast cancer samples. Such cell cycle phase index of the MammaPrint® signature suggested that measurement of the cell cycle index from tumors could be developed into a prognosis tool for various types of cancer beyond breast cancer, potentially improving therapy through targeting a specific phase of the cell cycle of cancer cells
BLAST05: Power Spectra of Bright Galactic Cirrus at Submillimeter Wavelengths
We report multi-wavelength power spectra of diffuse Galactic dust emission
from BLAST observations at 250, 350, and 500 microns in Galactic Plane fields
in Cygnus X and Aquila. These submillimeter power spectra statistically
quantify the self-similar structure observable over a broad range of scales and
can be used to assess the cirrus noise which limits the detection of faint
point sources. The advent of submillimeter surveys with the Herschel Space
Observatory makes the wavelength dependence a matter of interest. We show that
the observed relative amplitudes of the power spectra can be related through a
spectral energy distribution (SED). Fitting a simple modified black body to
this SED, we find the dust temperature in Cygnus X to be 19.9 +/- 1.3 K and in
the Aquila region 16.9 +/- 0.7 K. Our empirical estimates provide important new
insight into the substantial cirrus noise that will be encountered in
forthcoming observations.Comment: Submitted to the Astrophysical Journal. Maps and other data are
available at http://blastexperiment.info
BLAST: The Mass Function, Lifetimes, and Properties of Intermediate Mass Cores from a 50 Square Degree Submillimeter Galactic Survey in Vela (l = ~265)
We present first results from an unbiased 50 deg^2 submillimeter Galactic
survey at 250, 350, and 500 micron from the 2006 flight of the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST). The map has resolution ranging
from 36 arcsec to 60 arcsec in the three submillimeter bands spanning the
thermal emission peak of cold starless cores. We determine the temperature,
luminosity, and mass of more than one thousand compact sources in a range of
evolutionary stages and an unbiased statistical characterization of the
population. From comparison with C^(18)O data, we find the dust opacity per gas
mass, kappa r = 0.16 cm^2 g^(-1) at 250 micron, for cold clumps. We find that
2% of the mass of the molecular gas over this diverse region is in cores colder
than 14 K, and that the mass function for these cold cores is consistent with a
power law with index alpha = -3.22 +/- 0.14 over the mass range 14 M_sun < M <
80 M_sun. Additionally, we infer a mass-dependent cold core lifetime of t_c(M)
= 4E6 (M/20 M_sun)^(-0.9) years - longer than what has been found in previous
surveys of either low or high mass cores, and significantly longer than free
fall or likely turbulent decay times. This implies some form of non-thermal
support for cold cores during this early stage of star formation.Comment: Accepted for publication in the Astrophysical Journal. Maps available
at http://blastexperiment.info
The Balloon-Borne Large Aperture Submillimeter Telescope (BLAST) 2005: A 10 deg^2 Survey of Star Formation in Cygnus X
We present Cygnus X in a new multi-wavelength perspective based on an
unbiased BLAST survey at 250, 350, and 500 micron, combined with rich datasets
for this well-studied region. Our primary goal is to investigate the early
stages of high mass star formation. We have detected 184 compact sources in
various stages of evolution across all three BLAST bands. From their
well-constrained spectral energy distributions, we obtain the physical
properties mass, surface density, bolometric luminosity, and dust temperature.
Some of the bright sources reaching 40 K contain well-known compact H II
regions. We relate these to other sources at earlier stages of evolution via
the energetics as deduced from their position in the luminosity-mass (L-M)
diagram. The BLAST spectral coverage, near the peak of the spectral energy
distribution of the dust, reveals fainter sources too cool (~ 10 K) to be seen
by earlier shorter-wavelength surveys like IRAS. We detect thermal emission
from infrared dark clouds and investigate the phenomenon of cold ``starless
cores" more generally. Spitzer images of these cold sources often show stellar
nurseries, but these potential sites for massive star formation are ``starless"
in the sense that to date there is no massive protostar in a vigorous accretion
phase. We discuss evolution in the context of the L-M diagram. Theory raises
some interesting possibilities: some cold massive compact sources might never
form a cluster containing massive stars; and clusters with massive stars might
not have an identifiable compact cold massive precursor.Comment: 42 pages, 31 Figures, 6 table
Regional efforts to mitigate climate change in China: A multi-criteria assessment approach
The task of mitigating climate change is usually allocated through administrative regions in China. In order to put pressure on regions that perform poorly in mitigating climate changes and highlight regions with best-practice climate policies, this study explored a method to assess regional efforts on climate change mitigation at the sub-national level. A climate change mitigation index (CCMI) was developed with 15 objective indicators, which were divided into four categories, namely, emissions, efficiency, non-fossil energy, and climate policy. The indicators’ current level and recent development were measured for the first three categories. The index was applied to assess China’s provincial performance in climate protection based on the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. Empirical results show that the middle Yangtze River area and southern coastal area perform better than other areas in mitigating climate change. The average performance of the northwest area in China is the worst. In addition, climate change mitigation performance has a negative linear correlation with energy self-sufficiency ratio but does not have a significant linear correlation with social development level. Therefore, regional resource endowments had better be paid much more attention in terms of mitigating climate change because regions with good resource endowments in China tend to perform poorly
LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model
Persistent activation of the signal transducer and activator of transcription 3 (STAT3) signalling has been linked to oncogenesis and the development of chemotherapy resistance in glioblastoma and other cancers. Inhibition of the STAT3 pathway thus represents an attractive therapeutic approach for cancer. In this study, we investigated the inhibitory effects of a small molecule compound known as LLL-3, which is a structural analogue of the earlier reported STAT3 inhibitor, STA-21, on the cell viability of human glioblastoma cells, U87, U373, and U251 expressing constitutively activated STAT3. We also investigated the inhibitory effects of LLL-3 on U87 glioblastoma cell growth in a mouse tumour model as well as the impact it had on the survival time of the treated mice. We observed that LLL-3 inhibited STAT3-dependent transcriptional and DNA binding activities. LLL-3 also inhibited viability of U87, U373, and U251 glioblastoma cells as well as induced apoptosis of these glioblastoma cell lines as evidenced by increased poly (ADP-ribose) polymerase (PARP) and caspase-3 cleavages. Furthermore, the U87 glioblastoma tumour-bearing mice treated with LLL-3 exhibited prolonged survival relative to vehicle-treated mice (28.5 vs 16 days) and had smaller intracranial tumours and no evidence of contralateral invasion. These results suggest that LLL-3 may be a potential therapeutic agent in the treatment of glioblastoma with constitutive STAT3 activation. Originally published in British Journal of Cancer 2009 Vol. 110, No.
Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels
Purpose Bioenergy is increasingly used to help meet greenhouse gas (GHG) and renewable energy targets. However, bioenergy’s sustainability has been questioned, resulting in increasing use of life cycle assessment (LCA). Bioenergy systems are global and complex, and market forces can result in significant changes, relevant to LCA and policy. The goal of this paper is to illustrate the complexities associated with LCA, with particular focus on bioenergy and associated policy development, so that its use can more effectively inform policymakers. Methods The review is based on the results from a series of workshops focused on bioenergy life cycle assessment. Expert submissions were compiled and categorized within the first two workshops. Over 100 issues emerged. Accounting for redundancies and close similarities in the list, this reduced to around 60 challenges, many of which are deeply interrelated. Some of these issues were then explored further at a policyfacing workshop in London, UK. The authors applied a rigorous approach to categorize the challenges identified to be at the intersection of biofuels/bioenergy LCA and policy. Results and discussion The credibility of LCA is core to its use in policy. Even LCAs that comply with ISO standards and policy and regulatory instruments leave a great deal of scope for interpretation and flexibility. Within the bioenergy sector, this has led to frustration and at times a lack of obvious direction. This paper identifies the main challenge clusters: overarching issues, application and practice and value and ethical judgments. Many of these are reflective of the transition from application of LCA to assess individual products or systems to the wider approach that is becoming more common. Uncertainty in impact assessment strongly influences planning and compliance due to challenges in assigning accountability, and communicating the inherent complexity and uncertainty within bioenergy is becoming of greater importance. Conclusions The emergence of LCA in bioenergy governance is particularly significant because other sectors are likely to transition to similar governance models. LCA is being stretched to accommodate complex and broad policy-relevant questions, seeking to incorporate externalities that have major implications for long-term sustainability. As policy increasingly relies on LCA, the strains placed on the methodology are becoming both clearer and impedimentary. The implications for energy policy, and in particular bioenergy, are large
- …
